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abstract

The article considers nonparametric estimation of value-at-risk (VaR) and
associated standard error estimation for dependent financial returns. Theoretical
properties of the kernel VaR estimator are investigated in the context of depen-
dence. The presence of dependence affects the variance of the VaR estimates and
has to be taken into consideration in order to obtain adequate assessment of their
variation. An estimation procedure of the standard errors is proposed based on
kernel estimation of the spectral density of a derived series. The performance of
the VaR estimators and the proposed standard error estimation procedure are
evaluated by theoretical investigation, simulation of commonly used models for
financial returns, and empirical studies on real financial return series.

keywords: �-mixing, kernel estimation, sample quantile, spectral density

estimation, standard error estimation

Value-at-risk (VaR) is a popular measure of market risk associated with an asset or

a portfolio of assets. It has been chosen by the Basel Committee on Banking

Supervision as a benchmark risk measure and has been used by financial institu-

tions for asset management and minimization of risk. Let Xtf gnt¼1 be the market

value of an asset over n periods of a time unit, and let Yt = log (Xt / Xt�1) be the log-

returns. Suppose Ytf gnt¼1 is a strictly stationary dependent process with marginal
distribution function F. Given a positive value p close to zero, the 1 � p level VaR is

�p ¼ inf u : F uð Þ � pf g, ð1Þ
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which specifies the smallest amount of loss such that the probability of the loss in

market value being larger than �p is less than p. Comprehensive discussions on VaR

are available in Duffie and Pan (1997) and Jorion (2001), and references therein.

Early estimators of VaR are based on parametric models for the return
distribution F, for instance, Gaussian or t-distributions. A more sophisticated

parametric approach based on autoregressive conditional heteroskedastic

(ARCH) or generalized ARCH (GARCH) models has been developed under the

trademarks of RiskMetrics, KMV, and Creditmetrics, which are able to resemble

to certain degrees the fat-tail phenomenon of financial returns as well as data

dependence. The advantages of the parametric approaches lay in their easy

interpretation. However, they are model dependent and are subject to errors of

model misspecification. Recently a VaR estimation method based on extreme
value distributions (EVDs) is gaining popularity. The EVD approach fits the

extreme tail part of data by a generalized Pareto distribution. The approach is

based on the Balkema-de Haan-Pickands theorem [Balkema and de Haan (1974)]

for independent and identically distributed high exceedances. The situations where

the EVD approach is suitable include independent and identically distributed

(i.i.d.) returns and dependent returns that can be expressed as a process with

i.i.d. innovations [see Embrechts, Resnick, and Samorodnitsky (1999) and McNeil

and Frey (2000) for comprehensive reviews].
Model-free nonparametric estimation of VaR has been proposed by Dowd

(2001) based on the sample quantile, which is commonly called the historical VaR.

Gourieroux, Laurent, and Scaillet (2000) introduce nonparametric kernel VaR

estimators. These nonparametric estimators have the advantages of (i) being

free of distributional assumptions on Yt, while being able to capture fat-tail and

asymmetry distribution of returns automatically; and (ii) imposing weaker

assumptions on the dynamics of the return process. A potential limitation of

nonparametric methods may be the requirement of a reasonable sample size to
ensure good performance. However, our simulation results reported in Section 7

indicate that the nonparametric approach produces reasonable VaR estimates for

sample sizes of 125, which corresponds roughly to six months of data. Also, the

sample size required by the nonparametric approach is comparable to that

required by the EVD approach, as both approaches concentrate on the tail part

of the data. When weighing between errors due to small sample size (sampling

errors) and errors of model misspecification (model errors), we should go for the

former, as the sampling errors can be measured mathematically, whereas the
same is difficult to do for the model errors. In other words, the model risk of

using a nonparametric approach is lower than that of a parametric approach.

That financial return series are subject to data dependence is a known reality

in empirical finance, which was the motivation behind proposing ARCH/

GARCH models, along with the observation that the returns tend to have heavy

tails. Recently Bellini and Figá-Talamanca (2002) have shown, by carrying out a

nonparametric runs test, that financial time series exhibit quite strong tail depen-

dence, even for large threshold levels. This calls for a more general approach for
VaR estimation that is able to cater for dependence, yet still works when the data
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are independent. Developing such an approach is an objective of this article. The

dependence structures that are applicable by the techniques proposed here are

very wide, including autoregressive moving average (ARMA), ARCH/GARCH,

stochastic volatility, and diffusion models, as long as they satisfy the �-mixing.
Another issue that the current article wishes to address is the provision of

standard errors for VaR estimates. It appears that users of VaR have not paid

much attention to the standard errors associated with their estimates. As a

consequence, their VaR estimates are subject to uncertain risk themselves. Providing

the standard errors is not only practically important, as it provides a measure of

risk for the VaR, but also an interesting statistical problem as the dependence

makes the variance estimation a nontrivial task. We propose an approach based

on a kernel estimation of a spectral density function that can capture all the
covariances induced by the dependence.

There are some concerns about the nonparametric VaR approach. One concern

is that extreme quantiles are difficult to estimate nonparametrically and would

require large numbers of observations. Indeed, extreme quantiles generally

require larger sample sizes to estimate as the amount of data information is thin

in the tail part of the distribution. However, this would be the case for the other

approaches too. A parametric approach may be easily implemented comput-

ationally. Its main difficulty is its exposure to the model risk, which is hard to
evaluate mathematically. As demonstrated by both theory and simulation

studies, we show in this article that extreme quantiles can be estimated effectively

by the nonparametric kernel method. Another concern with the nonparametric

approach is that the VaR estimates are volatile whenever a large loss enters the

sample. We do not think this is a valid concern. Take the sample VaR estimator at

level 1 – p as an example. As it is the pth sample quantile, it is unchanged unless

there are more than [pn] big new losses entering the return series; here [a] is the

integer part of the real number a. If n> 100, a single big loss does not alter the 99%
sample VaR estimate, and the robustness increases when n becomes larger. In

contrast, both the parametric and the EVD-based VaR estimates would be altered

by the single big loss.

The article is structured as follows. Section 1 introduces various financial

return models to which the results of the article are applicable. Nonparametric

VaR estimators are outlined in Section 2 and their statistical properties are

investigated in Section 3. The issue of standard error estimation is considered in

Section 4. Section 5 gives details of practical implementation. Simulation results
are presented in Section 6, whereas empirical analyses of two financial returns

series are carried out in Section 7. Section 8 gives a general discussion. All the

technical details are provided in the appendix.

1 DEPENDENCE STRUCTURE AND MODELS

Let us first introduce the concept of mixing for dependent processes. For the log

return series Ytf gnt¼1; let F
l
k be the s-algebra of events generated by {Yt , k � t � l}

for l � k. The �-mixing coefficient introduced by Rosenblatt (1956) is
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�ðkÞ ¼ sup
A˛F i

1 B˛F1
iþk

jPðABÞ � PðAÞPðBÞj:

The series is said to be �-mixing if limk!1�ðkÞ ¼ 0: The dependence described by
�-mixing is the weakest, as it is implied by other types of mixing; see Doukhan

(1994) for comprehensive discussions on mixing and related topics. A series is

said to be geometric �-mixing if �(k) � crk for k � 1 and some constants c > 0 and

r ˛ ð0; 1Þ:
The following commonly used financial econometric models generate series

Ytf gnt¼1 which are geometric �-mixing and hence to which the results of this

article may be applicable.

1.1 Linear Processes

For a linear causal process (which includes ARMA models),

Yt ¼
X1
s¼0

gt�sxs

with i.i.d. innovation xsf g1s¼0, Gorodeskii (1977) showed that the process is �-mixing

under certain conditions and established the rate for the �-mixing coefficient. Pham

and Tran (1985) show that if each coefficient gt of the process isO(�t), 0< � < 1, then

the process is geometric �-mixing.

1.2 Markov Processes

Consider a Markov process

Yt ¼ m Yt�1,p

� �
þ s Yt�1,p

� �
Et, ð2Þ

where Yt�1; p ¼ Yt�1;: : :; Yt�pÞ
�

are p-lagged values of Yt and Etf gTt¼1 are i.i.d.
random variables. Here m(�) and s2(�) are, respectively, the conditional mean

and volatility functions of Yt given Yt�1; p: The model includes ARCH(p) models.

Masry and Tjøstheim (1995) prove that the series is geometric ergodic and

�-mixing under some mild conditions.

1.3 GARCH Models

Let Yt�1 denote the sigma-field generated by {Yi}i�t�1. The GARCH (p,q) model

introduced by Bollerslev (1986) for the return can be specified as follows:

E YtjYt�1

� �
¼ 0 and var YtjYt�1

� �
¼ ht ¼ : cþ

Xp
i¼1

�iYt�i þ
Xq
j¼1

bjht�j,

where c, �i, and bj are all positive parameters. Carrasco and Chen (2002) provides
general conditions that ensure the above GARCH (p, q) model as a special case of

the generalized hidden Markov models is geometric b-mixing [see Doukhan (1994)
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for its definition and relationship to �-mixing] and hence geometric �-mixing. They

also give more explicit conditions for various GARCH (1,1) models.

1.4 Continuous-Time Diffusion Models

Continuous-time models are effective tools for modeling continuous evolution of

asset value processes over time. Here ðYtÞt�0 is the log-price process in which the

index t takes value continuously within [0, 1). A time-homogeneous diffusion

model for the log-return is specified by the following stochastic differential equation:

dỸt ¼ mðỸtÞdtþ sðỸtÞdWt, ð3Þ

where mð�Þ and sð�Þ are the drift and diffusion functions, respectively, and Wt is a

Brownian motion independent of Ỹt. Although ðỸtÞt�0 is continuous in time, what

we observe is a discrete sample path ỸjD
� �n

j¼1
at equally spaced time points tj = iD

for some D > 0. For a family of diffusion model

dỸt ¼ �ðb� ỸtÞdtþ cỸ�
t dWt,

Genon-Catalot, Jeantheau, and Laredo (2000) have given restrictions on the para-

meters (�, �, �) such that ỸjD
� �T

j¼1
is geometric �-mixing. This implies that the log-

return series Yj

� �n
j¼1

where Yj ¼ ỸjD � Ỹðj�1ÞD is geometric �-mixing.

1.5 Stochastic Volatility Models

Stochastic volatility models are extensions of the one-factor diffusion model of

Equation (3) that allows the volatility of the log-price process Ỹt

� �
t�0

to be driven

by another diffusion model as follows:

dỸt ¼ stdWt, Vt ¼ s2t , and dVt ¼ bðVtÞdtþ aðVtÞdBt, ð4Þ

where Wt; Btð Þt�0 is a two-dimensional Brownian motion, Vtð Þt�0 is a positive

diffusion, and V0 = Z is a positive random variable independent of Wt; Btð Þt�0: The

stochastic volatility Vt is not directly observable. Genon-Catalot, Jeantheau, and

Laredo (2000) show for a discretely observed sample path ỸjD
� �T

j¼1
; by treating the

model as hidden Markov chain, that the series ỸjD
� �

is geometric �-mixing under
certain conditions, which implies that the log-return series is geometric�-mixing too.

2 NONPARAMETRIC ESTIMATION OF VaR

Let Fn xð Þ ¼ n�1
Pn

j¼1 IðYj � xÞ be the empirical distribution function of the return

series {Yt}, where I(�) is the indicator function. The historical VaR estimator proposed

by Dowd (2001) is �̂p ¼ Y np½ �þ1ð Þ; where Y(r) is the rth order statistic. It is just the

sample quantile estimator commonly used in statistics by replacing F with Fn in

Equation (1). And for this reason, it is called the sample VaR estimator in this article.

It is a consistent estimator of �p for �-mixing data [Yoshihara (1995)]. However, as
the VaR is an extreme quantile situated in the tail region of the distributionwhere the

amount of data information in thin, it will be beneficial to carry out kernel smoothing
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on the empirical distribution Fn. The smoothing essentially leads to an estimator that

is a weighted average of the order statistics around Y([np]+1) rather than relying on a

single-order statistic. Studies done for i.i.d. data [e.g., Falk (1984) and Sheather and

Marron (1990)] showed that the variance of the sample quantile estimator is reduced
by kernel smoothing. For pairwise positively or negatively quadrant-dependent

data, Cai and Roussas (1997) studied various asymptotic properties of the kernel

quantile estimator. In this article we focus on �-mixing series and study the effects of

smoothing on the bias and variance of the kernel estimator.

Let GðxÞ ¼
R x
�1 KðuÞdu be the distribution function of a kernel function K

which is a symmetric probability density function. A kernel estimator of F(x)

replaces the indicator function I in the formulation of Fn by the smoother G, that is,

F̂n,hðxÞ ¼ n�1
Xn
j¼1

G
x� Yj

h

� �
, ð5Þ

where h is a smoothing bandwidth that controls the amount of smoothness in the

estimation of F. A kernel estimator of �p, denoted as �̂p;h, is obtained by inverting

F̂n;hðxÞ ¼ p, such that �̂p;h satisfies

n�1
Xn
j¼1

G
�̂p,h � Yj

h

� �
¼ p: ð6Þ

This kernel VaR estimator, first introduced by Gourieroux, Laurent, and Scaillet

(2000) in the context of VaR estimation, can be viewed as a smoothed version of �̂p.
In studying the properties of the kernel VaR estimator, we assume the

following conditions:

Assumption 1. The process Ytf gnt¼1 is strictly stationary and �-mixing, and there

exists a r ˛ (0, 1) such that �ðkÞ � Crk for all k � 1; each Yt is continuously dis-

tributed with f and F as its density and distribution functions, respectively.

Assumption 2. f(�p) > 0 and f has continuous second derivative in a neighborhood
B(�p) of �p; the second partial derivatives of Fk, which is the joint distribution

function of (Y1, Yk+1) k � 1, are all bounded in B(�p) uniformly with respect to k.

Assumption 3. K is a univariate probability density function, has continuous

bounded second derivative, and satisfies the following moment conditions:

Z 1

�1
uKðuÞdu ¼ 0 and

Z 1

�1
u2KðuÞdu ¼ s2K:

Assumption 4. The smoothing bandwidth h satisfies h ! 0, nh3�� ! 1 for any

� > 0, and nh4 log2(n) ! 0 as n ! 1.
The stationarity and geometric �-mixing assumed in Assumption 1 are satisfied

by those models discussed in the previous section under certain conditions.
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Assumption 2 contains standard conditions for quantile estimation, whereas condi-

tions inAssumption 3 and 4 are commonly imposed conditions in kernel smoothing.

In particular, conditions in Assumption 4 specify a range for the bandwidth h.

3 PROPERTIES OF THE NONPARAMETRIC
VaR ESTIMATORS

Let us first outline some existing results on the sample VaR estimator �p. Yoshihara

(1995) established the following Bahadur representation under �-mixing:

�̂p � �p ¼
Fnð�pÞ � p

f ð�pÞ
þO n�3=4logðnÞ

n o
a:s:, ð1Þ

and showed that

varð�̂pÞ ¼ n�1f�2ð�pÞ�2ðp; nÞ f1þ oð1Þg, ð2Þ

where s2ðp; nÞ ¼ p 1� pð Þ þ 2
Pn�1

k¼1 ð1� k=nÞ�ðkÞ
n o

and �ðkÞ ¼ cov I Y1 < �p
� �

;
�

IðYkþ1 < �pÞg for positive integers k. The Bahadur representation implies strong

convergence of �̂p to �p and also indicates under certain conditions that

Eð�̂pÞ ¼ �p þOðn�3=4Þ: ð3Þ

A key quantify that describes the variance properties of the kernal estimator

�̂p;h is �2
hðp; nÞ ¼ p 1� pð Þ þ 2

Pn�1
k¼1 ð1� k=nÞ�hðkÞ

n o
; where �hðkÞ ¼

cov G
�p � Y1

h

� �
;G

�p � Ykþ1

h

� �� �
: The following lemma indicates that s2ðp; nÞ

differs from the unsmoothed s2ðnÞ by an amount of o(h).

Lemma 1. Under the conditions of Assumptions 1–4, js2h p; nð Þ � s2 p; nð Þj ¼ oðhÞ:
The strong convergence of the kernel estimator �̂p;h to �p at a rate is provided in

the following theorem.

Theorem 1. Under the conditions of Assumptions 1–4, �̂p;h = �p + o{n1/2log�1(n)} a.s.

The following theorem provides details on the bias and variance of the kernel

estimator.

Theorem 2. Under the conditions of Assumptions 1–4, as n ! 1,

Eð�̂p,hÞ ¼ �p �
1

2
h2�2

K f 0ð�pÞf�1ð�pÞ þ oðh2Þ: ð4Þ

varð�̂p,hÞ ¼ n�1f�2ð�pÞ�2
hðp; nÞ � 2n�1hf�1ð�pÞbK þ oðh=nÞ, ð5Þ

where bK ¼
R
uKðuÞGðuÞdu:
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Remark 1. The difficulty in the VaR estimation is clearly spelt out by the appearance

of f2(�p) in the denominator of the leading variance terms of both nonpara-

metric estimators as given in Equation (2) and Equation (5). It clearly demon-

strates that the variability of VaR estimates increases when p gets smaller as f(�p)
tend to become thinner. The latter reflects the reality of fewer return observations

around �p.

Remark 2. From Lemma 1 and Equation (5), we have

varð�̂p,hÞ ¼ n�1f�2ð�pÞ�2ðp; nÞ � 2n�1hf�1ð�pÞbK þ oðh=nÞ, ð6Þ

which together with Equation (2) indicates that both the kernel and the sample

VaR estimators share the same leading asymptotic variance term. However, the
kernel estimator reduces the variance in the second order of h/n as bk > 0. This

second-order reduction is still significant considering that (i) the data are thin in

the tail and (ii) even a second-order reduction can still be significant in financial

terms as, say, a 10% reduction can translate to a large reduction of provision in the

absolute dollar term.

Remark 3. The impact of data dependence on the variance of VaR estimators is

clearly felt through either s2 p; nð Þ or s2h p; nð Þ via the covariances � kð Þ and �h kð Þ,
respectively. For independent data,

Pn�1
k¼1 �h kð Þ ¼ 0, which means that the asymp-

totic variance is simply n�1p(1�p)f -2(�p). If there is dependence in the data and it

is ignored, the asymptotic variance of the nonparametric VaR estimates would be

wrongly regarded as n�1p 1� pð Þf�2 �p
� �

; resulting in a wrong assessment of the

variability.

Let MSE �̂p;h
� �

¼ : E �̂p;h � �p
� �2

be the mean square error (MSE) of �̂p;h. From

Theorem 2 and Equation (6),

MSE �̂p,h
� �

¼ n�1f�2 �p
� �

�2 p; nð Þ � 2f �p
� �

bKhn
�1 þ 1

4
h4�4

K f
0
�p
� �

f�1 �p
� �n o2

þ o h=nþ h4
� �

:

Then the optimal bandwidth that minimizes MSE �̂p;ĥÞ
	

is

hopt ¼
2f 3 �p
� �

bK

�4
Kf

02 �p
� �

( )1=3

n�1=3, ð7Þ

which can be estimated by plugging in the estimates of f �p
� �

and f 0 �p
� �

;an issue
that will be discussed in Section 5. Substituting hopt into Equation (8), the optimal

MSE is then

MSE �̂p,h
� �

¼ n�1�2 p; nð Þ � 3 2�2=3
	 


b
4=3
K �

�4=3
K f 2 �p

� �
f 0 �p
� �� ��4=3

n�4=3 þ o n�4=3
	 


, ð8Þ

which indicates a reduction to the MSE of the second order.
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The following theorem establishes the asymptotic normality of �̂p;h, which can

be used to construct asymptotic confidence intervals for �p as well as to carry out

tests on hypotheses regarding �p.

Theorem 3. Under the conditions of Assumptions 1–4, as n ! 1;

ffiffiffi
n

p
�̂p,h � �p
� �

!d N 0, �2 pð Þf�2 �p
� �� �

,

where s2 pð Þ ¼ limn!1s2 p; nð Þ, whose existence is guaranteed by Assumption 1.

4 STANDARD ERRORS OF VaR ESTIMATES

Regardless of which VaR estimator we use, a standard error has to be attached in
order to gain information on its variability. It seems that practitioners have not

paid their due attention to the issue of standard errors. It is not uncommon to see

VaR estimates presented without attaching standard errors. As a result, their

estimates are subject to uncertain risk themselves. The issue is very important

here, as VaR estimates are subject to high variability, and it is crucial to have

knowledge of this variability. Providing standard errors is not only practically

important, as it provides a measure of risk for the VaR, but also an interesting

statistical problem, as the dependence makes the variance estimation a nontrivial
task. We propose an approach based on a kernel estimation of the spectral density

function which can capture all the covariances induced by the dependence.

The key is to estimate s2h p; nð Þ ¼ p 1� pð Þ þ 2
Pn�1

k¼1 �h kð Þ: Although each �h kð Þ
may be estimated consistently, adding these (n�1) estimates together does not

yield even a consistent estimator of s2h p; nð Þ: The route we are going to take is to

estimate the spectral density of the derived series Ztf gnt¼1 ¼ G
�p � Yt

h

� �� �n

t¼1

;

where h is the bandwidth used in the kernel VaR estimation and is regarded as a

given quantity in this section.
Let i be the imaginary number in complex analysis, and

f lð Þ ¼ 2pð Þ�1
X1
k¼�1

�h kð Þ exp �iklð Þ for l ˛ �p, p½ �

be the spectral density of Ztf gnt¼1. From the Davyadov inequality, j�h kð Þj � C� kð Þ
for some constant C > 0. Thus, from Assumption 1,

P1
k¼0 j�h kð Þj < 1, which

in turn implies that f 0ð Þ is finite and hence the derived series is weakly

dependent. According to Brockwell and Davis (1991, Corollary 4.3.2),
limn!1 s2h p; nð Þ � 2pf 0ð Þ

� �
¼ 0. Hence the estimation of s2h p; nð Þ can be achieved

by estimating f 0ð Þ.
Define

In oj

� �
¼ n�1j

Xn
l¼1

Zle
�iloj j2, j ¼ 0, ±1, :::, ± n=2½ �, ð9Þ
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where oj ¼ 2pj=n ˛ �p; p½ � are the Fourier frequencies. Let T ¼
±1; ±2; ::: ± n=2½ � � 1ð Þf g, which excludes 0, as In(0) has different asymptotic

behaviors form other In oj

� �
. According to Theorem 5.2.6 of Brillinger (1981) for

any j ˛ T,

In oj

� �
¼ 2pð Þf oj

� �
Ej þ Rj, ð10Þ

where Ej

� �
j˛T are independent standard exponential random variables and

Rj

� �
j˛T are asymptotically negligible terms.

We note that Ztf gnt¼1 are not observable due to the involvement of the

unknown �p. Let Ẑt ¼ G
�̂p � Yt

h

� �
; and În !j

� �
be the periodograms defined on

Ẑt

n on

t¼1
by replacing Zt by Ẑt in Equation (9). As Ẑt ¼ Zt þ opð1Þuniformly for all

t’s, it may be shown that În oj

� �
¼ In oj

� �
þ op 1ð Þ uniformly for all j˛T. Hence from

Equation (10),

În oj

� �
¼ 2pð Þf oj

� �
Ej þ R0

j, ð11Þ

where R0
j are asymptotically negligible. However, a single periodogram does not

lead to a consistent estimation of the spectral density. Smoothing the period-

ograms over neighboring frequencies are needed. There is a substantial amount

of literature on kernel estimation of spectral density in statistics [Brockwell and

Davis (1991)] and in econometrics [Andrews and Monahan (1992)].
A commonly used approach, for instance, that used in Fan and Gijbels (1996)

and Lee (1997), is to take the logarithm on both sides of Equation (11) and ignore { R0
j}

log În oj

� �
= 2pð Þ

n o
¼ log f oj

� �� �
þ log Ej

� �
for j˛T: ð12Þ

Note that E{log(Ej)} = �0.57721 (the Euler constant) and var{log(Ej)} = �2/6. Let

�j = log(Ej) + 0.57721, Wj ¼ log În oj

� �
= 2pð Þ

n o
þ 0:57721, and m(!) = log{�(!)}.

Then Equation (12) can be approximated by the following fixed-design nonpara-

metric regression:

Wj ¼ m oj

� �
þ Zj j ˛T ð13Þ

where {�j}j˛T are i.i.d. with zero mean and variance s2Z ¼ p2=6. The idea is to
estimate m(0) = log{�(0)} by kernel smoothing.

The Nadaraya-Waston (NW) estimator of m(!) based on another kernel K1

and a smoothing bandwidth b is

m̂b oð Þ ¼
P

j˛T K1
o�oj

b

� �
WjP

j˛T K1
o�oj

b

� � , ð14Þ

where b!0 and nb!1 as n!1. Then, a kernel estimator of �(0) is
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f̂ 0ð Þ ¼ exp m̂b 0ð Þf g: ð15Þ

Fan and Gijbels (1996) considered a local linear kernel estimation of spectral

density. As the design points are fixed at the Fourier frequencies !j and zero is

not a boundary point (negative frequencies are used), the NW estimator is as

good as the local linear estimator in this particular situation.
Standard results in nonparametric regression, for instance, those given in

Andrews and Monahan (1992), show that m̂b 0ð Þ!p
m 0ð Þ, and thus f̂ 0ð Þ!p

f 0ð Þ as
n ! 1.

After estimating �(0) and ignoring the second-order difference in the variance

between �̂p;hand �̂p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pf̂ 0ð Þ
nf̂2 �̂p,h
� �

vuut

can be regarded as the common standard error for both VaR estimates where f̂ �ð Þ
is an estimator of f(�). The estimation of f will be discussed in the next section.

The above procedure for obtaining the standard error is for the case of �(0) 6¼ 0.

If �(0) = 0, then the variance of �p,h will be smaller order of n�1. To estimate the

variance in this case, we need to develop a new variance expansion, and then the
similar plug-in method as just outlined can be adapted.

5 PRACTICAL IMPLEMENTATION

In this section we discuss issues related to implementing the kernel VaR and its

standard error estimation.

5.1 Kernel VaR Estimation

As mentioned in Section 4, we suggest using a kernel supported on R rather than

a compact kernel in order to facilitate standard error estimation. The Gaussian

kernel is a natural choice. What is left to decide is the selection of h. The

theoretically optimal h given in Equation (7) is

hopt ¼
2f 3 �p
� �

bK

�4k f 02 �p
� �

( )1=3

n�1=3:

Here bK and s2K are known after choosing K. The approach we use in the plug-in
method, that is, to obtain h by plugging-in estimates of f(�p) and f 0(�p) into the

above formula. First of all, we replace �p by the sample VaR �̂p. The method of

reference to a parametric distribution, which is a simple and commonly used

bandwidth selection method in kernel smoothing, is used to obtain estimates of f

and f 0. A natural candidate for the reference distribution is the generalized Pareto
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(GP) distribution, as we are concerned with an extreme quantile that is situated in

the tail of the distribution. In particular, let

o�,m,s xð Þ ¼ 1

s
1þ �

x� m
s

	 
� 1þ1
�ð Þ

ð16Þ

be the density of aGPdistributionwith a scale parameter �, a shape parameter �, and

a truncation level 	 [see Reiss and Thomas (2001) for comprehensive discussions on

the theory and applications of GP distributions]. For a 99% VaR, we fit the lower

5% of the data to a GP model, which means taking m ¼ �̂0:05. For other levels of

VaR, 	 should be adjusted accordingly. Let ŝ and �̂ be the method of moment

estimates of the parameters. Then the estimates of f(�p) and f 0 �p
� �

are, respectively,

!�̂;ŝ;�̂0:05 �̂p
� �

and !0
�̂;ŝ;�̂0:05

�̂p
� �

, which then lead to a practically useful h.

5.2 Standard Error Estimation

The kernel K1 can be any kernel, compactly supported or otherwise. The main

issue is the selection of b. For bandwidth selection, the objective function we want

to minimize with respect to b is

R bð Þ ¼ 1

n

X
j˛T

qnj m oj

� �
� m̂b oj

� �� �2
, ð17Þ

be defining weights qnj = I(|j| � [kn]), where kn is an integer depending on n. We

choose kn = [0.05n], which means that only the 10% periodograms close to the zero

frequency are considered. This is natural, as we are interested in estimation of

�(0) only. Again, we eliminate In (0) by choosing j˛T, as In(0) has entirely

different asymptotics. A derivation presented in the appendix shows that an

unbiased estimate of R(b) is

r bð Þ ¼ 1

n

X
j˛T

qnj Wj � m̂b oj

� �� �2 þ p2

6
1� 4pK 0ð Þ

nb

� �X
j˛T

qnj: ð18Þ

Ignoring the term not involving b, the object function needing to be minimized is

then

1

n

X
j˛T

qj Wj � m̂b oj

� �� �2 þ 2p3K 0ð Þ
3nb

X
j˛T

qj:

On the estimation of f(�p), for simplicity we choose f̂ �p
� �

¼ !�̂;ŝ;n̂0:05 �̂ph
� �

;

which is a by-product of the h-bandwidth selection discussed earlier.

6 SIMULATION RESULTS

In this section we report results from a simulation study designed to evaluate the
performance of the nonparametric VaR estimators and their standard error esti-
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mation for six commonly used financial time-series models, which offers a wide

range of dependent structures. The models considered are

(i) AR(1) model: Yt ¼ 0:5Yt�1 þ Et; E iid
t � N 0; 1ð Þ;

(ii) AR(2) model: Yt ¼ 0:9Yt�1 � 0:2Yt�2 þ Et; E iid
t � N 0; 1ð Þ;

(iii) MA(2)model: Yt ¼ Et þ 0:65Et�1 þ 0:24Et�2 E iid
t � N 0; 1ð Þ;

(iv) ARCH(1) model: Yt ¼ 0:5Yt�1 þ EtE2t ¼ 4þ 0:5E2t�1 þ Zt; Z
iid

t � N 0; 1ð Þ;
(v) Stochastic volatility (SV) model:

Yt ¼ VtEt, log Vtð Þ ¼ 0:6 log Vt�1ð Þ þ Zt, E
iid

t � Nð0, 1Þ,

Z iid
t � N 0,0:5ð Þ, cov Et, Ztð Þ ¼ 0:5, and cov Et, Zt�j

	 

¼ 0 for j > 0;

(vi) Diffusion model: dỸt ¼ 0:4 2� Ỹt

� �
dtþ

ffiffiffiffiffi
50

p
dBt; Bt is the Brownian

motion and Yt ¼ Ỹt � ỸtþD with D ¼ 1=250 (daily returns).

The generation of the AR and MA series is straightforward. To generate the

ARCH series, we generate an i.i.d. series {
t} such that P[
t = ±1] = 0.5, and another

series Zt = 4 + 0.5Zt�1 + �t, where Z iid
t � N 0;1ð Þ: The innovations for the ARCH

series are then Et ¼ dt
ffiffiffiffiffi
Zt

p
. For the SV series, we generate two i.i.d. standard

normal series Etf g and {zt}, and let Zt ¼ 0:5Et þ 0:5Bt;which are, respectively,

the innovations of the SV model. The rest follows the formulae of the model.

The diffusion Ỹt is generated, from Ỹt�D;from the transitional density

N Ỹt�De
�0:4D þ 2 1� e�0:4D

� �
; 50 1� e0:8D

� �
=0:8

� �
; whereas Ỹ0 is generated from the

stationary distribution N (2,50/0.8). It should be noted that the ARCH and SV

models are only asymptotically stationary. Therefore we prerun the series for

1000 times in each simulation before the real series being started. The exact VaR

values for the ARCH and SV models are obtained, based on 10,000 simulation of

the real models, whereas those for the AR, MA, and the diffusion models can be

obtained from the known stationary distributions.

We choose the Gaussian kernel K uð Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2pð Þ

p exp �u2=2
� �

as the kernel for esti-

mating VaR and the biweight kernel K1 uð Þ ¼ 15
16 1� u2
� �2

I juj � 1ð Þ for estima-

ting f(0). The bandwidths h and b are chosen according to the procedures outlined

intheprevioussection.Thesamplesizerangesfrom125to2000,whichcorrespondsto

data ranging from 6months to 8 years.
The results on the bias, the standard deviation (SD), and the root mean square

error (RMSE) of the nonparametric estimates of 99% VaR are reported in Tables 1–6

for the six models based on 5000 simulations. The tables also include the estimated

standard errors of the kernel VaR estimates. We find that both nonparametric VaR

estimators produce quite satisfactory results for all those models considered. It is

very assuring to see that the proposed standard error estimation procedure offers

quite an accurate prediction of the real standard deviation of the kernel and sample

VaR estimates, even when the sample size is small. We observe that the bias, the
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standard deviations, and the RMSEs all decrease as n increases, which indicates the

proposed VaR estimation methods are consistent. The kernel estimates have less

RMSE than their sample VaR counterparts, confirming our theory given in Equa-

tion (8). However, the reduction in RMSE is not very large for large samples, which
reflects our early prediction that the reduction is of second order only. We note that

Table 1 99% VaR kernel and sample quantile estimates for 99% VaR for the AR(1)
model with the true 99% VaR at 2.686235

Kernel Sample Est. SD

N Bias SD RMSE Bias SD RMSE SˆD SD

125 �0.1137 0.3984 0.4143 �0.1374 0.3989 0.4288 0.3808 0.2634

250 �0.0333 0.3055 0.3073 �0.0362 0.3076 0.3098 0.3014 0.1939

500 �0.0316 0.2153 0.2176 �0.0561 0.2156 0.2227 0.2130 0.0854

1000 �0.0065 0.1551 0.1553 �0.0303 0.1553 0.1582 0.1554 0.0434

2000 0.0073 0.1092 0.1095 �0.0152 0.1093 0.1104 0.1116 0.0220

Table 2 99% VaR kernel and sample quantile estimates for 99% VaR for the AR(2)
model with the true 99% VaR at 3.589669

Kernel Sample Est. SD

N Bias SD RMSE Bias SD RMSE SˆD SD

125 �0.2083 0.6416 0.6745 �0.2317 0.6418 0.6825 0.6465 0.3940

250 �0.0618 0.4958 0.4997 �0.0641 0.4976 0.5017 0.4848 0.3673

500 �0.0556 0.3518 0.3561 �0.0800 0.3520 0.3609 0.3395 0.1695

1000 �0.0162 0.2536 0.2541 �0.0400 0.2536 0.2566 0.2478 0.0862

2000 0.0080 0.1815 0.1817 �0.0148 0.1816 0.1822 0.1806 0.0447

Table 3 99% VaR kernel and sample quantile estimates for 99% VaR for the MA(2)
model with the true 99% VaR at 2.830220

Kernel Sample Est. SD

N Bias SD RMSE Bias SD RMSE SˆD SD

125 �0.1143 0.4217 0.4369 �0.1382 0.4218 0.4439 0.4053 0.2883

250 �0.0302 0.3240 0.3255 �0.0327 0.3262 0.3279 0.3251 0.2096

500 �0.0295 0.2272 0.2291 �0.0540 0.2274 0.2337 0.2293 0.0927

1000 �0.0057 0.1618 0.1620 �0.0297 0.1619 0.1646 0.1653 0.0449

2000 0.0099 0.1132 0.1137 �0.0124 0.1132 0.1138 0.1189 0.0223
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the kernel estimates have smaller bias than the sample VaR estimates, while having

almost the same variance (the kernel variance is only slightly smaller). This sug-

gests that the proposed data-driven h-bandwidth may be slightly smaller. For a

larger h, the variance of the kernel would be smaller and in return the bias would be
larger. This is a common phenomenon in kernel smoothing.

Table 4 99% VaR kernel and sample quantile estimates for 99% VaR for the ARCH(1)
model with the true 99% VaR at 5.664672

Kernel Sample Est. SD

N Bias SD RMSE Bias SD RMSE SˆD SD

125 �0.1413 0.3196 0.3495 �0.1639 0.3202 0.3597 0.2973 0.1602

250 �0.0559 0.2061 0.2135 �0.0576 0.2079 0.2157 0.2200 0.1254

500 �0.0282 0.1580 0.1606 �0.0514 0.1581 0.1661 0.1531 0.0822

1000 �0.0047 0.1159 0.1160 �0.0263 0.1161 0.1190 0.1100 0.0410

2000 0.0032 0.0822 0.0823 �0.0156 0.0823 0.0837 0.0815 0.0210

Table 5 99% VaR kernal and sample quantile estimates for 99% VaR for the SVM
model with the true 99% VaR at 2.383659

Kernel Sample Est. SD

N Bias SD RMSE Bias SD RMSE SˆD SD

125 �0.0837 0.6768 0.6820 �0.1079 0.6770 0.6856 0.6391 0.5694

250 0.0146 0.5292 0.5294 0.0121 0.5313 0.5315 0.5774 0.3315

500 �0.0416 0.3640 0.3664 �0.0800 0.3641 0.3701 0.3486 0.1322

1000 �0.0067 0.2728 0.2730 �0.0313 0.2729 0.2764 0.2510 0.0714

2000 0.0098 0.1937 0.1940 �0.0139 0.1936 0.1940 0.1790 0.0362

Table 6 99% VaR kernel and sample quantile estimates for 99% VaR for the VASICEK
model with the real 99% VaR at 1.040374

Kernel Sample Est. SD

N Bias SD RMSE Bias SD RMSE SˆD SD

125 �0.0190 0.1352 0.1366 �0.0426 0.1353 0.1418 0.1614 0.1019

250 �0.0043 0.1010 0.1012 �0.0070 0.1026 0.1028 0.1041 0.0545

500 0.0051 0.0694 0.0695 �0.0193 0.0695 0.0721 0.0754 0.0244

1000 0.0146 0.0498 0.0519 �0.0094 0.0498 0.0507 0.0551 0.0122

2000 0.0167 0.0352 0.0389 �0.0058 0.0351 0.0366 0.0392 0.0060
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7 EMPIRICAL STUDIES

In this section we apply the nonparametric VaR inference procedures to analyze

the daily log-return series of the Nasdaq index and Microsoft from January 1,
1999, to December 31, 2002, which consist of four years of data (n = 1000). These

two return series are displayed in Figure 1 a and c, respectively. The sample

autocorrelation functions for the square of the returns are plotted in Figure 1b

and d, which indicate substantial amount of dependence in these two series. To

formally confirm it, we calculate the Box-Pierce Q-test statistic Q ¼ n
P26

k¼1 �̂ kð Þ2,
where �̂ kð Þ is the sample autocorrelation. If the series are independent,Q should be

distributed as w226. It is found that Q = 367.42 for the Nasdaq and Q = 87.43 for

Microsoft. Both are overwhelmingly larger than w226 0:01ð Þ ¼ 45:64, the 1% percentile
of w226. The p-value of these two series are almost zero, indicating strong depen-

dence in both of the returns series.

To gain insights into the dynamics of these two return series, we plot in

Figures 2 and 3 the kernel estimates of the return densities for the two series based

on, respectively, each of the four one-year segments of the series, each of the two-

year segments, and the entire four years of data. The bandwidths used to draw

these kernel density estimates are given by the default values of S-plus for the

Gaussian kernel. There are some yearly variations in the kernel density estimates
as shown in panels A of Figures 2 and 3, especially between, before, and after

2000. This reflects well the burst of the Internet bubble. These may indicate the

returns not being stationary. However, it may also be due to variations. Further

investigation is needed on the issue. The density estimates based on the two-year

data are much more stable, and they are not that different from the density

estimates based on the four years of data especially in the left tail.

We carried out the 99% VaR estimation using the kernel VaR estimation for

the first and last two years, and the entire four years of these two series, respec-
tively. Standard errors for the VaR estimates are obtained by applying the pro-

posed spectral density estimation method. These results are summarized in

Figure 4, which displays bars centered at the kernel VaR estimates whose length

is 3.92 times the estimated standard error. So they can be regarded as a kind of

95% confidence intervals for the real VaR. For Nasdaq, the h and b bandwidths

were, respectively, 0.003 and 0.8216 for the 1999–2000 subseries, 0.003 and 0.9433

for the 2001–2002 subseries, and 0.002 and 0.4251 for the entire series. For Micro-

soft, the bandwidths were, respectively, 0.003 and 0.6856 for the 1999–2000 sub-
series, 0.005 and 0.7233 for the 2001–2002 subseries, and 0.002 and 0.3995 for the

entire series. We do not present the sample VaR estimates, as they are very close

to the kernel estimates.

For the Nasdaq returns, we see little change among the three kernel VaR

estimates, and these were all around 6% after removing the negative sign. There

were some variations in the VaR estimates for Microsoft. In particular, the estimate

for the two years 1999–2000 was at 7.48%, much higher than the other two esti-

mates. For both series, the variability of the VaR estimation was higher for the first
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two-year period than for the last two-year period. There was substantial reduction

in variation when the length of the series increased from two to four years.

For comparison, we also present in the figure standard errors of the kernel

VaR estimates assuming independence, which were all smaller than those under

dependence. The difference between the two standard errors was the largest at
the first two-year period of the Nasdaq series. We also present the parametric VaR
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Figure 1 Daily log-return series for Nasdaq (a) and Microsoft (b) from January 1, 1999, to
December 31, 2002; sample autocorrelation functions for Nasdaq (c) and Microsoft (d).
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estimates based on the independent Gaussian model with the standard errors

obtained by the bootstrap. Two bootstrap resampling schemes were employed:

the full nonparametric bootstrap, which resamples directly from the original data

by sampling with replacement, and the parametric bootstrap, by generating

resamples from NðY;S2Þ where Y and S2 are, respectively, the sample mean and
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Figure 2 Kernel density estimates for Nasdaq returns.
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variance of the returns. The bootstrap standard errors of the parametric Gaussian

VaR estimates were all much smaller than those of the kernel VaR, and indicate

possible severe underestimation of the variability. We also observe quite large

discrepancies between the parametric and nonparametric VaR estimates for the

Microsoft series in the period 1999–2000.
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Figure 3 Kernel density estimates for Microsoft returns.
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8 DISCUSSIONS

Despite its popular use by financial institutions for risk management, VaR is known

to be, in general, a noncoherent measure of risk, as it is not subadditive [Artzner
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Figure 4 Kernel and parametric VaR estimates Microsoft (a) and Microsoft (b). The VaR esti-
mates are reported without the negative sign.
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et al. (1999)]. Examples of VaR being not subadditive have been given in Artzner

et al. (1999) when the return distribution F is discrete. The properties of the VaR

improve when the returns are continuously distributed. It is known that VaR

is subadditive within the family of Gaussian returns. Embrechts, McNeil, and
Straumann (2002) show that it is also the case for the family of elliptical distribu-

tions. It may be shown by generalizing the proof of the above authors that the VaR

is subadditive within any family of distributions generated by the location-scale

transformation of a distribution F0, that is, FðxÞ ¼ fFjFðxÞ ¼ F0
x� a
b

	 

for any a,

b ˛ R}, which includes the Gaussain and elliptical families as special cases, as well

as the normal inverse Gaussian subfamily within the family of generalized hyper-

bolic distributions which is closely associated with continuous-time asset pricing

models based on Lévy processes [Eberlein (1999)]. The expected shortfall (ES) is a
closely related risk measure to VaR, which is coherent. Nonparametric estimation

of the ES has been considered in Scaillet (2004). Because of the close link between

the VaR and the ES, an investigation of the estimation of standard errors of VaR

will be helpful to the inference of ES too.

This article has provided an evaluation on the statistical properties of the

kernel and sample VaR estimators and has proposed a nonparametric procedure

for the standard error estimation for a wide range of dependence structures.

Considering that a bandwidth h has to be chosen for the kernel method, one
may just use the simpler �̂p. However, the extra effort of smoothing pays off at the

end, as it produces estimates with less RMSE, which may translate to large

savings in absolute dollar terms. This is especially the case when the sample

size is small. Another advantage of smoothing is in the standard error estimation.

Our study shows that to achieve a fixed level of accuracy, the standard error

estimation based on the unsmoothed series I Yt � �̂p
� �� �

requires a much larger

sample size than that required for the smoothed series G
�̂p;h�Yt

h

	 
n o
. Smoothing

significantly enhances the estimation of standard errors.

APPENDIX: PROOFS

A.1 Proof of Lemma 1

The proof follows that of Lemma 2.2 of Cai and Roussas (1998), but replaces their

Equation (2.15), which is a key result under the assumption that {Yt} are positively

or supnegatively dependent random variables, by

sup
x,yð Þ˛ R2

jFk x,yð Þ � F xð ÞF yð Þj � � kð Þ, ðA:1Þ

which is trivially true from the definition of �(k). In particular, j�hðkÞ � �ðkÞj �
Ch2; as shown in Cai and Roussas (1998). It is fairly clear from Equation (A.1) that

j�ðkÞj � C1�ðkÞ and j�hðkÞj � C1�ðkÞ: These means

j�hðkÞ � �ðkÞj � Ch2��1�� ðkÞ:
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As condition (i) means
P1

j¼1 �
1�� ðjÞ<1; we have

Xn�1

k�1

1� k=nð Þj�h kð Þ � �ðkÞj � C1h
2�
X1
k¼1

�1��ðkÞ ¼ Oðh2� Þ:

This completes the proof. &

A.2 Proof of Theorem 1

The theorem is proved if

X1
n¼1

P j�̂p,h � �pj � n�1=2log nð Þ�
	 


1 ðA:2Þ

for any Z > 0. Let E = n�1/2log(n)Z. Then,

A ¼ :Pðj�̂p,h � �pj � EÞ � Pð�̂p,h > �p þ EÞ þ Pð�̂p,h < �p � EÞ

¼ P p� Fð�p þ EÞ > F̂n,hð�p þ EÞ � Fð�p þ EÞ
n o

þP p� F �p � E
� �

< F̂n,h �p � E
� �

� F �p � E
� �n o

:

By Taylor expansion of F �p ± E
� �

at �p;

A ¼ P F̂n,h �p þ E
� �

� F �p þ E
� �

< �f �p þ �1E
� �

E
n o

þ P F̂n,h �p � E
� �

� F �p � E
� �

> f �p � �2E
� �

E
n o

� P jF̂n,h �p þ E
� �

� F �p þ E
� �

j > c1E
n o

þ P jF̂n,h �p � E
� �

� F �p � E
� �

j > c1E
n o

,

where y1, y2 ˛ (0, 1) and c1 = infx˛[�p�E,�p+E] f(x) > 0 as implied by condition (iv).

The above equations indicate that Equation (A.2) is established if

X1
n¼1

P jF̂n,h �p þ 
E
� �

� F �p þ 
E
� �

j � n�1=2log nð ÞZ
n o

< 1 ðA:3Þ

for l = 1 an �1.

We prove the case for l = 1 only as the other case is exactly the same. Notice that

E F̂n,h �p þ E
� �

� F �p þ E
� �n o

¼
Z1
�1

F �p þ E� hu
� �

� F �p þ E
� �� �

K uð Þdu

¼
Z 1

�1

f 0 �p þ E� y3hu
� �

h2u2K uð Þdu,

where y3 ˛ 0; 1ð Þ: As f 0 is bounded in a neighborhood of �p and nh4 log2(n)! 0 as

assumed in condition (iv), we have
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jE F̂n,h �p þ E
� �n o

� F �p þ E
� �

j ¼ O h2
� �

¼ o n�1=2log nð Þ
n o

: ðA:4Þ

Let Zj = Gh(�p+ E �Yj) � E {Gh(�p + E�Yj)}. Clearly, E(Zj) = 0 and jzjj � 2: Let

q = b0n
1/2log(n), p = n/(2q), and u2(q)=max0�j�2q�1 E

P j¼1ð Þp½ �
l¼ jp½ �þ1 Zl

� �2

: From an

inequality given in Bosq (1998:Theorem 1.3) for �-mixing sequences,

P j
Xn
j¼1

Zjj > c2nE

0
@

1
A � 4exp � c22E

2q

8s2 qð Þ

� �
þ 22 1þ 8

c2E

� �1=2

q� n= 2qð Þ½ �f g, ðA:5Þ

where �2(q) = 2p�2u2(q) + E = Cn�1/2log(n). It is obvious that

4exp � c21E
2q

8s2ðqÞ

� �
� 4exp �C b0ð Þlog2 nð Þ

� �
, ðA:6Þ

where C(b0) > 0 is a constant which is positively related to b0. From condition (i),

22 1þ 8

c1E

� �1=2

q� n= 2qð Þ½ �f g � Cn3=4log�1=6 nð Þ� n1=2log�1 nÞ=2ð �g
hn

ðA:7Þ

� Cn3=4log�1=6 nð Þrn1=2log
�1 nð Þ=2,

which converges to zero sufficiently fast. From Equations (A.5), (A.6), and (A.7),

we have

X1
n¼1

P j
Xn
j¼1

Zjj > c1nE

0
@

1
A < 1:

This and Equation (A.4) imply Equation (A.3) for l ¼ 1. Thus we complete the

proof of Theorem 1. &

A.3 Proof of Theorem 2

We derive the variance of F̂n;h �p
� �

in the following lemma.

Lemma 2. Under conditions (i) and (ii),

var F̂n,h �p
� �n o

¼ n�1 p 1� pð Þ þ 2
Xn�1

k�1

�h kð Þ
( )

� 2hf �p
� � Z

uK uð ÞG uð Þduþ o h=nð Þ:

Proof. Note that

var F̂n,h �p
� �n o

¼ n�1var G
�� Y1

h

� �� �
þ n�1

Xn�1

k¼1

1� k=nð Þ�h kð Þ
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and

var G
y� Y1

h

� �� �
¼ p 1� pð Þ � 2hf �p

� � Z
uK uð ÞG uð Þduþ o hð Þ:

These immediately imply the lemma.

Lemma 3. Under conditions (i) and (ii), for l, k = 1 or 2 and 1+ k � 3,

cov p� F̂n,h �p
� �n ol

, p� F̂n,h �p
� �n ok

� 

¼ o h=nð Þ: ðA:8Þ

Proof. Let mh xð Þ ¼ E F̂n;h xð Þ
n o

. It can be shown that mh �p
� �

� p ¼ O h2
� �

. From

Theorem 2 of Yokoyama (1980) under the geometric strong mixing condition

Ejmh �p
� �

� F̂n,h �p
� �

jr ¼ Cn�r=2, ðA:9Þ

for any positive integer r and a positive constant C. We only prove for the
case of l = 2 and k = 2, since that for l = 1 and k = 2 is slightly simpler. Note

that

cov p� F̂n,h �p
� �n o2

, p� F̂n,h �p
� �n o2

� 

¼ E p� F̂n,h �p

� �n o4

� E2 p� F̂n,h �p
� �n o2

:

From Lemma 2, E p� F̂n;h �p
� �n o2

¼ E2 p� 	h �p
� �� �2 þ var F̂n;h �p

� �n o
¼

O n�1 þ h4
� �

: This together with Equation (A.9) implies

cov p� F̂n,h �p
� �n o2

, p� F̂n,h �p
� �n o2

� 

¼ O n�2 þ h2n�3=2 þ h4n�1 þ h8

	 

¼ o h=nð Þ:

Thus completes the proof. &

Proof of Theorem 2

Since Equation (4) can be easily established via a standard derivation of the bias,
we only derive the variance part of the theorem. Let

f̂n,h xð Þ ¼ nhð Þ�1
Xn
t¼1

K
�̂p,h � Yt

h

� �
and f̂ 0

n,h xð Þ ¼ nh2
� ��1Xn

t¼1

K0 �̂p,h � Yt

h

� �

be the kernel estimators of the density f(x) and the density derivative f 0 xð Þ,
respectively.

Expand F̂n;h ŷp
	 


at �p,

p ¼ n�1F̂n,h �p
� �

þ f̂n,h �p
� �

�̂p,h � �p
� �

þ 1

2
f̂ 0
n,h �p þ � �̂p,h � �p

� �� �
�̂p,h � �p
� �2

, ðA:10Þ

where y ˛ ð0;1Þ. From Lemma 2.1 of Bosq (1998)
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f̂ �p
� �

¼ f �p
� �

þO nhð Þ�1=2log nð Þ
n o

a:s:

Slightly modifying Theorem 2.2 of Bosq (1998) from density estimation to density

derivative estimator, it can be proved that

sup
y˛ 0,1½ �

j f̂ 0 �p þ � �̂p,h � �p
� �� �

� f 0 �p þ � �̂p,h � �p
� �� �

j ¼ Op nh2
� ��1=2

log nð Þ
n o

:

Since f has bounded second derivative near �p as implied by condition (iv), we

have

sup
y˛ 0,1½ �

j f 0 �p þ � �̂p,h � �p
� �� �

� f 0 �p
� �

j ¼ Op n�1=2log nð Þ
n o

:

Also, Theorem 1 implies p� F̂n;h �p
� �

¼ o n�1=2log nð Þ
� �

a.s. These results imply

that, by inverting the expansion of Equation (A.10),

�̂p,h � �p ¼
p� F̂n,h �p

� �
f̂n,h �p
� � � 1

2

f̂ 0n,h �p þ � �̂p,h � �p
� �� �

f̂ 3n,h �p
� � p� F̂n,h �p

� �	 
2
þOp n�3=2log3 nð Þ

n o

¼
p� F̂n,h �p

� �
f̂n,h �p
� � � 1

2

f 0 �p
� �

p� F̂n,h �p
� �	 
2

f 3 �p
� �

þOp n�3=2h�1log3 nð Þ
n o

: ðA:11Þ

From Lemma 3,

var �̂p,h
� �

¼ var
p� F̂n,h �p

� �
f̂n,h �q
� �

 !
� cov

p� F̂n,h �p
� �

f̂n,h �q
� � ,

f 0 �p
� �

p� F̂n,h �p
� �	 
2

f 3 �p
� �

0
B@

1
CA

þvar
f 0 �p
� �

p� F̂n,h �p
� �	 


f̂ 3n,h �p
� �

2
8><
>:

9>=
>;þ o h=nð Þ

¼ var
p� F̂n,h �p

� �
f̂n,h �q
� �

( )
þ o h=nð Þ ðA:12Þ

Employing the delta method,

var
p� F̂n,h �p

� �
f̂n,h �q
� �

( )
¼ f�2 �p

� �
var F̂n,h �p

� �n o
þ o h=nð Þ:

This together with Lemmas 1 and 2 leads to Equation (5). &
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A.4. Proof of Theorem 3

From Equation (A.11) and note that f̂n;h �p
� �

¼ f �p
� �

þOp nhð Þ1=2 þ h2
n o

;

�̂p,h � �p ¼
p� F̂n,h �p

� �
f �p
� � þOp n�1h�1=2 þ n�1=2h2

	 

:

Hence we only need to prove the asymptotic normality of F̂n;h �p
� �

� p ¼
n�1

Pn
i¼1 Ti;n þ E Gh �p � Y1

� �
� p; where Ti;n ¼ Gh �p � Yi

� �
� E Gh �p � Yi

� �� �
:

�
Let k and k0 be, respectively, positive integers such that k0 ! 1; k0=k ! 0

and k=n ! 0 as n ! 1. Let r be a positive integer so that r kþ k0ð Þ � n < r

kþ k0 þ 1ð Þ: Define the large blocks

Vj,n ¼ T j�1ð Þ kþk0ð Þþ1,n þ � � � þ T j�1ð Þ kþk0ð Þþk,n for j ¼ 1,2, � � �, r;

the smaller blocks

V0
j,n ¼ T j�1ð Þ kþk0ð Þþkþ1,n þ � � � þ T j�1ð Þ kþk0ð Þþkþk0 ,n for j ¼ 1,2, � � �, r

and the residual block dn ¼ Tr kþk0ð Þþ1;n þ � � � þ Tn;n: Then

Sn ¼ : n�1=2
Xn
i¼1

Ti,n ¼ n�1=2
Xr
j¼1

Vjn þ n�1=2
Xr
j¼1

V0
jn þ n�1=2dn

¼ : Sn,1 þ Sn,2 þ Sn,3:

We note that E Sn;2
� �

¼ E Sn;3
� �

¼ 0 and as n ! 1;

var Sn,2ð Þ ¼ rs2 pð Þ
nf 2 �p
� � 1þ o 1ð Þf g ! 0 and var Sn,3ð Þ

¼ n� r kþ k0ð Þð Þ�2 pð Þ
nf 2 �p
� � 1þ o 1ð Þf g ! 0:

Therefore, for l = 2 and 3

Sn,l !
p
0 as n ! 1: ðA:13Þ

We are left to prove the asymptotic normality of Sn,1. From Bradley’s lemma,

there exist i.i.d. random variables Wj,n such that each Wj,n is identically distrib-

uted as Vj,n and

P jVj,n �Wj,nj � E
ffiffiffiffiffiffiffi
n=r

p	 

� 18E�1rn�1=2kVj,nk1=21 � k0ð Þ ðA:14Þ

� C1E�1n�1=2k1=2� k0ð Þ:

Let Dn ¼ Sn;1 � n�1=2
Pr

j¼1 Wj;n: Then ðA:15Þ

252 Journal of Financial Econometrics



p jDnj > Eð Þ �
Xr
j¼1

p jVj,n �Wj,nj � E
ffiffiffi
n

p� �

� C1r
3=2n�1=2 rkð Þ1=2� k0ð Þ � C2r

3=2rk
0
:

By choosing r ¼ na for a ˛ 0;1ð Þ and k0 ¼ nc such that c ˛ 0; 1� að Þ;we can show

that the left-hand side of Equation (A.15) converges to zero as n ! 1:Hence

Dn !
p
0 as n ! 1: ðA:16Þ

Therefore Sn;1 ¼ n�1=2
Pr

j¼1 Wj;n þ op 1ð Þ:

By applying the inequality established in Yokoyama (1980) and the construc-
tion of Wj,n, we have E Wj;n

� �4 ¼ E V4
j;n

	 

� C1k

2 and var Wj;n

� �
¼ E V2

j;n

	 

� C2k:

Thus P
EjWjnj4

r var W1nð Þf g2
� C3rk

r2k2
! 0

as n ! 1; which is the Liapounov condition for the central limit theorem of

triangular arrays. Therefore

n�1=2
Xr
j¼1

Wj,n !
d
Nð0,�2Þ as n ! 1: ðA:17Þ

It may be shown by checking on the variance of Vj,n that �
2 ¼ s2 pð Þ: Thus the proof

of the theorem is completed by combining Equations (A.13), (A.16), and (A.17).

A.5 Derivation of Equation (18)

Recall that

Wj ¼ m oj

� �
þ Zj, ðA:18Þ

where m oð Þ ¼ log f oð Þð Þ; Wj ¼ log In oj

� �
= 2pð Þ

� �
þ 0:57721; and Zj are indepen-

dent zero mean random variables with variance p2=6; and

m̂b oið Þ ¼
P

j˛T K
oi�oj

b

� �
WjP

j˛T K
oi�oj

b

� � ¼ :
X
j˛T

ob,iWj

It is obvious that E W2
i

� �
¼ m2 oið Þ þ p2=6; and

E Wim̂b oið Þf g ¼ E m oið Þ þ Zif g
P
j˛T

ob,jWj

" #

¼ E m oið Þ þ Zif g
X
j˛T

ob,j m oj

� �
þ Zj

n o
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¼ m oið Þ
X
j˛T

ob,jm oj

� �
þ E ob,ip2=6

� �

¼ m oið ÞE m̂b oið Þf g þ E
K 0ð Þp2
6nbẐ oið Þ ,

where Ẑ oð Þ is the kernel density estimator of Z oð Þ � 1= 2pð Þ: As E Ẑ�1 oið Þ
� �

¼

Z�1 oið Þ þO nbð Þ�1 þ b4
n o

;

E Wi � m̂b oið Þf g2 ¼ m2 oið Þ þ p2=6� 2 m oið ÞE m̂b oið Þf g þ K 0ð Þp3
3nb

h i
þ Em̂2

b oið Þ

¼ E m oið Þ � m̂b oið Þf g2 þ p2

6
1� 4pK 0ð Þ

nb

� �
þO nbð Þ�2:

From the above derivation, we have shown that

r bð Þ ¼ 1

n

X
j˛T

qj Wj � m̂b oj

� �� �2 � p2

6
1� 4pK 0ð Þ

nb

� �X
j˛T

qj

is an unbiased estimate of the weighted risk function.
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