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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Episode based air quality assessment to 
evaluate the average pollution loading. 

• Pollution episode selection with a data 
driven algorithm. 

• Downward trend in the episodic SO2 
and PM2.5, while that for NO2 was 
uncertain. 

• Increased episodic O3 in all seasons with 
that in autumn and winter at higher 
rates.  
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A B S T R A C T   

Air pollution naturally comes in episodes due to the repetition of the meteorological processes that remove and 
accumulate the pollutants. We present an episodic air quality assessment approach that consists of two steps. The 
first step selects the pollution episodes via a data driven algorithm that controls the wind conditions after a 
thorough removal process. The second step analyzes the episodic average and total pollution loading with respect 
to the within episode and prior episode meteorological conditions via the linear and random forest regression. A 
meteorological adjustment is conducted to remove the yearly meteorological variation in the estimated episodic 
air quality measures. Empirical analyses using the episode based assessment on four site clusters in three North 
China cities revealed that it offered sharper analysis and different perspectives on the underlying air quality than 
those based on the conventional full sample method due to the proper control in the episode selection.   

1. Introduction 

Air pollution is both an environmental and a public health problem, 
especially in developing countries. It can cause serious adverse effects on 
human health by either short-term or long-term exposure to air pollut-
ants, and air pollution is responsible for increased mortality and hospital 
admissions, reduced life expectancy, and the prevalence of asthma and 
allergies (Brunekreef and Holgate, 2002; Kampa and Castanas, 2008; 

Kim et al., 2013; Ghorani-Azam et al., 2016). Air pollution is also an 
important factor in affecting climate changes and the ecohydrological 
processes (Duan et al., 2017). Research has found that air pollution can 
have huge economic costs on individuals and society (Zhang et al., 
2017b; Taghizadeh-Hesary and Taghizadeh-Hesary, 2020). 

Measuring pollution emissions and their impacts on the air quality 
has been an urgent but challenging task in air quality management. 
Emission inventory has been an important tool for emission 
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measurement, which identifies and quantifies different sources of 
emission in a region based on economic and energy statistics as well as 
the estimates for the underlying economic and human activities; see 
Bouwman et al. (1997); Pacyna et al. (2006); Shi et al. (2014) for in-
ventories of specific pollution species and Streets et al. (2003); Ohara 
et al. (2007); Zhang et al. (2009); Kuenen et al. (2014) for specific re-
gions. Major shortcomings of the emission inventories are the mea-
surement errors and the time delay in composing them, which can 
reduce their accuracy in the air quality studies. 

Comprehensive numerical models with meteorological, emissions 
and chemical components have been established to conduct forecasting 
and regional air quality assessment. The Community Multiscale Air 
Quality (CMAQ) and the Nested Air Quality Prediction Modeling System 
(NAQPMS) are two such models (Byun and Schere, 2006; Liu et al., 
2010; Wang et al., 2001), which can conduct scenario analysis to 
simulate the air quality under various meteorological and emission 
scenarios. A limitation of the approach is that the aforementioned 
measurement errors associated with the emission inventory would make 
the generated scenarios subject to substantial errors and thus affect the 
quality of the air quality assessment. Statistical models have been 
employed to model the meteorological effects on the air quality (Briggs 
et al., 2000). Liang et al. (2015) proposed a framework that provides air 
quality measures under a meteorological baseline condition, constructed 
based on historic data, to remove the meteorological confounding on the 
air quality measures; see Zhang et al. (2017a) for an extension to remove 
both the temporal and spatial meteorological variation. 

It is known that the observed air quality is much affected by the 
meteorological conditions especially in the high temporal scales, as 
shown in Tai et al. (2010); Whiteman et al. (2014); Cheng et al. (2015), 
while Huang et al. (2021) provided ranks of variable importance for 
different pollutant species for North China cities. Zheng et al. (2015); Su 
et al. (2017) found a decrease of planetary boundary layer height hin-
dered the vertical mixing of pollutants, resulting in a faster accumula-
tion and higher concentrations. In addition to the general 
meteorological effects, wind condition is known to facilitate regional 
transportation of air pollutants, causing pollution to increase or decline 
under different wind directions. In the North China Plain (NCP), espe-
cially in the Beijing-Tianjin-Hebei region, regional transportation has 
played an important role in creating heavy pollution episodes (Lang 
et al., 2013; Zheng et al., 2015; Chang et al., 2019). To measure locally 
generated air pollution without the interference of regional trans-
portation, Zhu et al. (2021) employed a data-driven algorithm to select 
calm periods after sustained northerly cleaning but before the arrival of 
the transported pollutants, and proposed the air quality measures that 
reflect the local emission in three cities in NCP. A panel data regression 
model was used to model the accumulation of the pollutant with respect 
to the meteorological variables during the calm periods, which led to 
estimates of the growth rates of different pollutants during the periods. 

Naturally, air pollution comes in episodes due to regular repetitions 
of the weather cycle. A typical episode begins from a low pollution 
regime with calm wind after a cleaning, followed by a growth period 
caused by the local accumulation and regional transportation, and then 
another calm period usually accompanied with excessive pollution 
levels, and finally ends with a weather system that removes the pollu-
tion. As most of the severe pollution events happen in such episodes 
(Wang et al., 2018), there is a great need to conduct air quality assess-
ment from the episodic aspects in order to gain more understanding on 
the episodic nature of the air pollution in a location. Such episodic 
assessment will supplement the commonly practised assessment using 
the entire data without an episodic design. 

However, unlike the assessment with the entire data, the pollution 
episode and the accompanied meteorological data have to be selected 
via an algorithm based on meteorological and concentration related 
conditions. We will consider a more relaxed condition for PM2.5 than 
that of Wang et al. (2018) which aimed at the severe pollution episode 
only with the 24-h average PM2.5 concentration being above 150 μg/m3 

for at least two days. We use instead of PM2.5 at 35 or 50 μg/m3 as the 
threshold in the context of three North China cities, which would make 
the episodes include both severe and less severe pollution episodes and 
is more consistent with the World Health Organization’s guideline for 
long term pollution exposure with respect to human health. There is no 
doubt that the episode selection criteria depends on the geophysical 
configuration of a city or region, and thus has to be city or region 
specific. 

The episodic air quality assessment is made by first establishing the 
regression function of the total episodic pollution loading on regressors 
which quantifies the meteorology before and during the episodes. Both 
the linear regression and the non-parametric regression with the random 
forest method are considered, which show that the linear regression 
offered better in-sample fitting and the out-sample forecasting perfor-
mance than the random forest, and thus was selected for later assess-
ment. In order to remove potential bias caused by the meteorological 
variations, we formulate the meteorological adjusted total and average 
episodic pollution loading, and present ways to estimate these measures 
and their variations. 

The paper is organized as follows. Details of data and methods are 
presented in Section 2, which consists of three subsections. Section 2.1 
outlines the data and variables used in the analysis. The selection criteria 
for the pollution episode are given in Section 2.2. Section 2.3 provides 
modeling of the total episodic pollution loading via the linear and the 
non-parametric random forest regression, and the meteorological 
adjustment method. Section 3 reports the results of the episodic analysis 
on the average pollution loading of pollution episodes in the three cities 
from 2013 to 2020, which also reports the descriptive statistics on as-
pects of the episodes and the variable selection results. Section 4 con-
cludes the paper. Additional information, extra tables and figures are 
provided in the supporting information (SI). 

2. Material and methods 

2.1. Data and variables 

We considered hourly concentrations of six air pollutants PM2.5, 
NO2, CO, SO2, O3 and PM10 in three cities in North China Plain: Beijing, 
Tangshan and Baoding from March 2013 to February 2021, which 
contained 8 seasonal years. A seasonal year encompasses spring (March 
to May), summer (June to August), autumn (September to November) 
and winter (December to February of the following year). The air quality 
data were from twelve monitoring sites, which reported the hourly data 
directly to China National Environmental Monitoring Center in real 
time. The twelve monitoring sites made up four site clusters with each 
cluster having three sites, which were Beijing SE, Beijing NW, Tangshan, 
Baoding, respectively; see Table S1 in the SI for more specific informa-
tion of the site clusters. To reduce the measurement errors, we applied a 
five-point moving average filter over the hourly time series data with 
weights 0.1, 0.2, 0.4, 0.2 and 0.1 for t − 2, t − 1, t, t + 1 and t + 2, 
respectively. 

The considered meteorological variables were the air temperature 
(TEMP), the dew point temperature (DEWP), the relative humidity 
(HUMI), the air pressure (PRES), the wind speed (WS), direction (Wd) 
and the boundary layer height (BLH). The cumulative precipitation (R) 
referred to the sum of precipitation since the hour when it rained or 
snowed and was reset to zero when there was an hour without precip-
itation. Among the meteorological variables, the BLH data were ob-
tained from the Global Reanalysis dataset ERA5 provided by the 
European Center for Medium-Range Weather Forecasts (ECMWF) at a 
grid resolution of 0.5 × 0.5 (latitude by longitude), and the other 
meteorological variables were surface measurements from the China 
Meteorological Administration (CMA) monitoring sites. We matched the 
BLH grid data to the closest CMA monitoring site. And then each air 
quality monitoring site cluster was matched to the nearest meteoro-
logical site from CMA for the meteorological conditions corresponding 
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to the hourly pollution data. We took the logarithm of humidity (Log-
HUMI) and boundary layer height (LogBLH) to reduce the skewness of 
the variables. These variables are generally available and have been 
used in existing air quality studies such as Tai et al. (2010); Liang et al. 
(2015); Zheng et al. (2015); Wang et al. (2014). 

According to Liang et al. (2015), in North China Plain, the 16 wind 
directions can be grouped into five broad categories: northwest (NW) 
which includes W, WNW, NW, NNW and N; northeast (NE) for NNE, NE 
and ENE; southeast (SE) covering E, ESE, SE, SSE and S; southwest (SW) 
having SSW, SW and WSW; and the calm and variable (CV). We merge 
NE and NW to form the northerly wind, and combine SE, SW and CV for 
the southerly wind. Furthermore, we define the cumulative northerly 
wind speed (CNWS) as the sum of hourly northerly wind speed, and the 
cumulative southerly wind speed (CSWS) is similarly defined. In both 
cases, whenever the wind direction changes, the cumulation is reset to 0. 
Having the cumulative wind speeds for the two broad wind directions is 
to model the cleaning and the accumulation of pollution as the northerly 
(southerly) wind tends to remove (accumulate) pollutants in North 
China Plain due to the geographical and economic configurations; see 
Liang et al. (2015) for more details. 

There are variables associated with the pollution episodes, which 
will be defined after we define the episodes in the next section. 

2.2. Pollution episodes selection 

Our study is aimed at assessing the air pollution in the pollution 
episodes starting from a low level of PM2.5 after a sustained cleaning, 
followed by a calm growth period due to the local emission accumula-
tion, and then the regional transportation and air stagnation which 
usually accompanied with high and even severe pollution level, and 
finally the removal process by the northerly wind. We define the 
pollution episodes by extending the calm periods studied in Zhu et al. 
(2021) to cover the whole episodes as mentioned above. The purpose of 
Zhu et al. (2021) was for measuring the local emission’s effects on the air 
quality, which considered only the beginning portion of the episodes 
before the regional transportation of pollutants. 

We use the procedure in Zhu et al. (2021) to determine the beginning 
time ts of an episode. The ending time tω of the northerly cleaning pro-
cess satisfies 

CNWStω − 1 ≥ 10.8m/s  and  CNWStω = 0. (2.1) 

The beginning time ts of a pollution episode is located around tω, 
which corresponds to the lowest PM2.5 in an 8-h neighborhood of tω 
within a calm, cleaned and dry period. Let 𝒞 be the set of times when the 
system is calm, clean and dry satisfying 

WSt ≤ 5.4m/s,max{PM2.5t− 1, PM2.5t} ≤ 35μg
/

m3,Rt− 1 = Rt = 0. (2.2) 

It requires that PM2.5 is not higher than 35 μg/m3 for two consecutive 
hours, where 35 μg/m3 is the 24-h primary standard according to the 
National Ambient Air Quality Standards. However, for Tangshan and 
Baoding, we replace 35 with 50 μg/m3 in (2.2) due to more severe 
baseline pollution in the two cities as a result of heavier industrial in-
stallations in the two cities. Using the higher threshold was to ensure the 
sufficient number of episodes for the two cities. 

Let ℰtω be the set of the ending times of the previously selected epi-
sodes that end before tω. The beginning time ts of the episode is obtained 
by searching within an 8-h neighborhood of tω within 𝒞 after the ending 
time of the previous episode, namely 

ts = arg min
t∈ℬtω

PM2.5t, (2.3)  

where ℬtω = [tω − 8, tω + 8] ∩ (max{t : t ∈ ℰtω},L] ∩ 𝒞, and L is the total 
length of observation time in a season for a site cluster; see Zhu et al. 
(2021) for more details. 

A regular life cycle of a pollution episode starts from ts followed by 

sustained pollution accumulation that makes the PM2.5 peak at a time tp, 
and then due to the arrival of the northerly cleaning process, PM2.5 
rapidly declined to a low level of PM2.5, marking the end of the episode 
at a te. In the following, we explicitly define te. 

To define te, we first locate the time, say t50, when PM2.5 has reached 
50 μg/m3 after ts. If PM2.5 can not reach 50 μg/m3 before the next 
cleaning process arrives, the last obtained ts is abandoned and the search 
for a new set of tω and ts is re-started over the remaining time series. 
Otherwise, we search for the start of the cleaning period for the ending 
time te after t50. It is noted that requiring PM2.5 reaches 50 μg/m3 during 
the episode does not contradict to the 50 μg/m3 threshold used in 
defining the beginning time ts for Baoding and Tangshan. For the pur-
pose of locating te, we define two time sets 𝒟L1 and 𝒟L2 to quantify two 
conditions in the effort to define the ending time te of an episode. 
Moreover, Beijing, Tangshan and Baoding share the following definition 
of te which is classified into two cases associated with the strong and 
weaker cleaning, respectively. The 𝒟L1 describes a low PM2.5 regime 
such that 

𝒟L1 = {t |max{PM2.5t, PM2.5t+1, PM2.5t+2}≤ 35μg
/

m3}, (2.4)  

while 𝒟L2 prescribes a slightly higher PM2.5 state using 40 μg/m3 as the 
threshold rather than 35 μg/m3 with continued northerly wind, 

𝒟L2 = {t |PM2.5t ≤ 40μg
/

m3  and  max{CNWSt,CNWSt+1,CNWSt+2}> 0}.
(2.5) 

The ending time te is defined in two forms via 𝒟L1 and 𝒟L2, reflecting 
two ending patterns of the pollution episodes. The first one is 

te = mint∈𝒟L1{t : PM2.5t ≤min{PM2.5t− 2, PM2.5t− 1}, t> ts} (2.6) 

representing an ending with sustained lower PM2.5 level usually 
accompanied by strong cleaning or removal processes. In the second 
form, 

te = mint∈𝒟L2{t : PM2.5t− 3 − PM2.5t ≥ 50μg
/

m3, t> ts}. (2.7) 

Although this latter type of ending is also triggered by the northerly 
cleaning that makes PM2.5 dropped by more than 50 μg/m3 in the pro-
ceeding 3 h, it is different from the first type as the PM2.5 may not 
necessarily drop below 35 μg/m3 and the concentration may start to rise 
again and starts the next episode. Basically, the first type of ending is the 
result of strong and thorough cleaning while the second type is associ-
ated with weaker cleaning. Tables S2–S5 of the SI showed that 67%– 
98% of the episodes in the four site clusters were of the first type. 

It is clear that our definition of episodes is quite different from the 
existing episode formulations which focused on severe pollution. For 
instance, Wang et al. (2018) aimed at severe pollution episodes by 
requesting the 24-h average PM2.5 concentration being above 150 μg/m3 

for at least two days, and the ts is min\{t: PM2.5t:t+48 ≥ 150 μg/m3\} and 
te is min\{t: t> ts, PM2.5t < 150 μg/m3\}. However, this type of defi-
nition misses the initial calm and growth phase of the episodes, and does 
not provide a full account on the evolution of the episodes. 

Fig. 1 displays two pollution episodes with the two types of ending 
defined in (2.6) and (2.7). In the first case, after experiencing a northerly 
cleaning process as shown by the cumulative northerly speeds, PM2.5 
dropped below 35 μg/m3 and kept so for a period of time, indicating a 
strong and thorough cleaning process. In the second case, the cleaning 
process was weaker and could not reduce the concentration below 35 
μg/m3, but below 40 μg/m3. At the te, the cleaning process had ended, 
and the concentration would not decrease further after reaching the 
minimum value before it would start the next episode. 

After finding the ending time te, we went back to scan over the 
episode from ts to te for the peak time when the maximum PM2.5 was 
attained within the episode. Fig. 2 displays the time series of PM2.5 
versus the cumulative northerly and southerly wind speed (CNWS and 
CSWS) in Beijing’s Dongsi site (in Beijing SE) and Baoding’s Huadia-
nerqu site over November 2018. Recall that we have used 50 μg/m3 
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instead of 35 μg/m3 for Baoding and Tangshan when defining the start of 
episodes. These two figures confirmed the need as otherwise in Tang-
shan and Baoding there would be quite some episodes that could not be 
selected because the concentration at the start time was higher than 35 
μg/m3 but lower than 50 μg/m3, while it was obvious that there was an 
episode being formulated afterward. 

After having selected the episodes for a site from the original data 
series, we define variables to measure the wind condition in the 24 h 
before and 48 h after the starts of the episodes. Specifically, MCNWS 
(MCSWS) is the maximum of the cumulative northerly (southerly) wind 
speed in the 24 (48) hours before (after) the episodes, which quantifies 
the extent of cleaning (transportation) before (after) the episodes. 
Similar SNWS (SSWS) represents the sum of hourly northerly (southerly) 
wind speed in the 24 (48) hours before (after) the episodes, and PNWS 
(PSWS) is the percentage of northerly (southerly) wind in the 24 (48) 
hours before (after) the episodes. The total pollution loading of an 
episode is 

PL =
∑te

t=ts
PM2.5t (2.8)  

and the duration or length of the episode is Dur = te − ts. 
As each site cluster includes multiple sites, after determining the 

pollution episodes for each site, we take the union of the episode time 
periods of the sites to form episodes of the site cluster. The summary 
episodic statistics and analysis in the rest of the paper are based on 
episodes of the site clusters. 

2.3. Statistical methods 

For the four site clusters, the average gap times (standard errors) 
between two consecutive episodes over the eight years were 46(3.4), 70 
(4.6), 51(3.4) and 45 (3.6) hours in spring, summer, autumn and winter, 
respectively. The sufficient gap times between the adjacent episodes 
suggested that it is reasonable to assume that different episodes may be 
regarded as statistically independent, which leads to a linear model for 
the total pollution loading for the episodes. Specifically, for a site cluster 
and a season of year i, let PLij be the total pollution loading of a pollutant 
during the episode for i = 1, …, A and j = 1, …, ni, where A = 8 rep-
resents the total number of the seasonal years from 2013 to 2020, and ni 
is the total number of episodes in year i of the season in the site cluster. 

Let Mij = (DEWPij, PRESij, TEMPij, LogBLHij, LogHUMIij) be a 5- 
dimensional row vector of averages of the five meteorological vari-
ables during the j-th episode in year i, Nij = (MCNWSij, SNWSij, PNWSij) 
be the row vector of pre-episode summary on the northerly wind speed 
(maximum cumulative, the total and the proportion) in the 24 h before 
the start of the episode, and Sij = (MCSWSij, SSWSij, PSWSij) collects the 
specifics of the southerly wind in the 48 h since the start of the episode. 
Durij denotes the duration te − ts of the episode. 

2.3.1. Linear regression 
We first consider the linear regression of the total pollution loading 

PL of an episode on the meteorological variables before and during the 
episode as well as its duration. The model in year i for a cluster of a 
season is 

PLij = Mijαi + Nijγ1
i + Sijγ2

i + Durijηi + bi + ϵij = Uijβi + Durijηi + ϵij (2.9)  

where Uij = (Mij, Nij, Sij, 1) is the m-variate vector of explanatory vari-
ables, m is the number of regressors other than Durij, and αi, γ1

i , γ2
i are the 

coefficient vectors corresponding to the variables M, N, S, respectively, 

and βi = (α⊤
i , γ1

i
⊤
, γ2

i
⊤
, bi)

⊤
is the m-dimensional coefficient vector to Uij. 

Here bi is the intercept, and ϵij is possibly heterogeneous random error 
with zero conditional mean and finite conditional variance given the 
explanatory variables. 

It is noted that the above model is different from Zhu et al. (2021), 
which used the panel-data regression model. The current proposal is 
based on the episode-wise variables as shown above to model the 
pollution level over the entire pollution episodes, while Zhu et al. (2021) 
is on hourly data as the purpose was to measure the hourly growth rate 
of pollutants in the initial calm period of the episodes for local emission 
measurement. 

To avoid model over-fitting, we select the important variables by the 
forward step-wise method based on the Bayesian information criterion 
(BIC) (Schwarz, 1978), which chooses one variable at each step that 
leads to the largest reduction in the BIC until no more variables can be 
added to reduce the BIC; a similar forward selection method based on 
the mean square errors was used in Huang et al. (2021). Specifically, for 
each year and site cluster, we conduct the forward variable selection and 
record the rank of the selected variables. The ranks of the unselected 
variables are given the average of the remaining ranks of the unselected 

Fig. 1. Two pollution episodes with the two ending patterns caused by strong (left panel) and weak (right panel) northerly cleaning based on observations in Dongsi 
site in Beijing SE in the autumn of 2018 (left panel) and Huadianerqu site in Baoding in the winter of 2014 (right panel). The PM2.5(μg/m3) series was divided to three 
states: pollution (red), cleaning (yellow) and non-episode (black) with the cumulative northerly (southerly) winds speed (m/s) marked by green (purple). The black 
solid and brown dashed lines mark 35 μg/m3 and 10.8 m/s, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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variables. We then attain an initial variable importance order by aver-
aging the yearly ranks over the eight years. 

The final variable importance ordering is attained by calculating the 
cumulative R2 and BIC criteria when we successively add one variable 
according to the initial variable order attained above. The coefficient of 
determination 

R2 = 1 −
SSres

SStot
(2.10) 

measures the goodness of the model and the explaining power of the 
selected variables, where SStot and SSres refer to the total and the residual 
sums of squares of the regression, respectively. The variable selection 
ends at the variable that attains the minimum BIC values within the 
variables whose cumulative R2s are within 0.03 of the R2 attained by 
using all variables. 

2.3.2. Random forest 
Random forest (RF) (Ho, 1995; Breiman, 2001) offers a regression 

estimation and prediction in a model-free non-parametric fashion 
alternative to the linear regression. It is based on averaging over en-
sembles of regression trees. We consider applying the random forest on 

the same episode data and compare its performance with the linear 
regression to offer a wider perspective. In this study, the number of 
random forest trees is set to 500. A similar variable selection procedure 
for the linear regression was employed for the RF regression with the 
detail reported in the SI. 

2.3.3. Meteorological adjustment 
Since meteorological conditions vary from year to year, in order to 

remove the effect of the annual meteorological variation from the esti-
mated total pollution loading, we construct a baseline distribution to 
adjust for the meteorological variation. Liang et al. (2015) proposed a 
framework to adjust for the meteorological confounding via a meteo-
rological baseline to make the pollutant concentration comparable 
temporally. A similar meteorological adjustment for estimating the 
growth rate was used in Zhu et al. (2021). Let fi (u|l) be the conditional 
density of Ui⋅ given Duri⋅ = l, where Ui⋅ = (Mi⋅, Ni⋅, Si⋅, 1) is the regression 
variables with intercept, and pil =

nil
ni 

for l = 1, …, Ti be a set of weights, 
where Ti is the maximum duration of episodes in year i, and nil is the 
number of episodes whose duration is l in year i. A = 8 represents the 
total number of the seasonal years from 2013 to 2020. The baseline 

Fig. 2. Time series of PM2.5(μg/m3), cumulative northerly (green) or southerly (purple) wind speed (m/s) in November 2018 in Dongsi site (top) in Beijing SE and 
Huadianerqu site (bottom) in Baoding with the during episode (cleaning) PM2.5 marked in red (yellow), and otherwise in black. The black solid line and brown 
dashed line mark 35 μg/m3 and 10.8 m/s, respectively. In Baoding, the 50 μg/m3 concentration is also marked with a solid black line. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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probability density function from 2013 to 2020 for the meteorological 
variables is 

f⋅(u, l) =
1
A
∑A

a=1
fa(u, l) =

1
A
∑A

a=1
palfa(u|l) (2.11) 

From (2.9) of the linear regression, 

E(PLij|Uij = uij,Durij = lij) = uijβi + lijηi. (2.12) 

The adjusted average pollution loading PL in year i is the mean of PLij 
for (Uij, Durij) distributed with f⋅(u, l) as the probability density, that is 

PL∗
i =

∫

u,l
E
(
PLij

⃒
⃒u, l
)
f⋅(u, l)dudl

=
1
A

∑A

a=1

∫

l
pal

∫

u
(uβi + lηi)fa(u|l)dudl

=
1
A

∑A

a=1

{
E
(
Uaj
)
βi + E

(
Duraj

)
ηi

}
.

(2.13) 

As in Liang et al. (2015), the meteorologically adjusted mean PL∗
i can 

be estimated by 

P̂Li =
1
A
∑A

a=1
n− 1

a

∑na

j=1
(Uaj β̂i +Duraj η̂i). (2.14) 

We use the method of Zhu et al. (2021) to obtain the robust variance 
estimator of P̂Li: 

Fig. 3. Summary statistics of the selected episodes in (a) Beijing SE, (b) Beijing NW, (c) Tangshan and (d) Baoding for each season from March 2013 to February 2020 
including the average number of episodes (Count), the average concentration of the episode, the maximum (Peak Concentration), the average length of the episodes 
in hours (Duration), the average length from ts to tp in hours (Duration to Peak), the average growth rate of pollution process from ts to tp. 
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V̂ar (θ̂i) =

(
∑ni

j=1
XijX⊤

ij

)− 1[
∑ni

j=1
(Xij ϵ̂ij)(Xij ϵ̂ij)

⊤

](
∑ni

j=1
XijX⊤

ij

)− 1

(2.15)  

where Xij = (Uij,Durij)
⊤ is the vector of selected covariates for episode j 

in year i, and θi = (β⊤
i , ηi)

⊤ be the regression coefficient vector and ϵ̂ij =

PLij − X⊤
ij θ̂i is the residual. The consistency and the asymptotic normality 

of P̂Li, and the validity of the variance estimation under some assump-
tions can be found in the SI of Zhu et al. (2021). 

A similar meteorologically adjusted RF estimator for the total 
pollution loading PLi is 

P̂L
RF
i =

1
A

∑A

a=1
n− 1

a

∑na

j=1
R̂Fi(Uaj,Duraj) (2.16) 

by substituting the past years variable information {(Uaj, Duraj)} to 
the estimated regression function by the RF. Let V̂ar (R̂Fi(Uaj,Duraj)) be 
the variance of the RF regression obtained based on 500 replications. 
Then, 

V̂ar (P̂L
RF
i ) =

1
A2

∑A

a=1
n− 2

a

∑na

j=1
V̂ar (R̂Fi(Uaj,Duraj)). (2.17) 

Considering that the duration of the episode may change (in fact a 
downward trend in the four site cluster as shown in Fig. 3), a more 
objective measure for the episode assessment is the meteorologically 
adjusted average episodic pollution loading I∗i = PL∗

i /E(Duri⋅), which is 
the ratio of the meteorologically adjusted mean episodic total pollution 
loading and the mean episodic duration. It can be estimated by 

Î
∗

i = P̂Li

/

Duri =
1
A
∑A

a=1
n− 1

a

∑na

j=1
(Uaj β̂i +Duraj η̂i)

/

Duri (2.18)  

where Duri is the average duration of all episodes in a certain season of 
the i-th year. The standard deviation of ̂I

∗

i can be formulated accordingly 
based on that for P̂Li and the delta method, with the detailed formula 
given in the SI. 

3. Results and discussion 

3.1. Features and trend of episodes 

We report the main features and trend of the selected pollution ep-
isodes to gain insights on the air quality from the episodic point of view 
rather than the conventional approach based on the entire data of a 
season. The episodic data mirror those collected via a statistical design 
of experiments in many fields of natural science as it has exercised 
controls in the sample selection to remove the less important aspects of 
the pollution process. Fig. 3 displays the seasonal summary statistics on 
the pollution episodes of the four site clusters in Beijing, Tangshan and 
Baoding from 2013 to 2020, while Tables S2–S5 in the SI provide their 
numeric values and the standard errors. 

The figure and the tables show that the number of episodes was the 
highest in winter for Beijing SE, Beijing NW and Tangshan as the epi-
sodes of the northerly were the most frequently in winter in Beijing and 
Tangshan. In contrast, Baoding’s autumn and winter had a lower 

number of episodes than the other three site clusters. In fact, there was 
less variation in the number of episodes in Baoding among the four 
seasons although the number of episodes in spring tended to be the most 
frequent. The fewer numbers of episodes in Baoding reflect its being less 
influenced by the northerly wind in terms of frequency and velocity as 
shown in Table 1, largely because it is geographically located to the 
south of the other two cities and more to the center of the North China 
Plain. Fig. 3 shows a clear negative correlation between the number of 
episodes and their duration, and the duration to the peak PM2.5 in the 
episodes. These are expected as fewer (more) episodes means prolonged 
(shortened) pollution period and fewer numbers of the northerly wind 
processes to remove the pollutants. 

Despite the winter season had the most pollution episodes with less 
duration due to more frequent northerly removal in Beijing and Tang-
shan, the episodic average and maximum PM2.5 concentration tended to 
be the highest in winter, which was also the case for Baoding. This re-
flected the increased emission coupled with lower boundary layer height 
in winter. The autumn season ranked just behind winter in terms of the 
average and maximum episodic PM2.5, followed by spring and summer, 
which were consistent with the seasonal pattern using the entire data as 
shown in Chen et al. (2018). Both the episodic average and maximum 
PM2.5 showed an overall downward trend for each season over the eight 
years from 2013 to 2020, reflecting an overall improvement in the air 
quality in North China Plain. By the year 2020, the average hourly 
episodic growth rates were all below 4 μg/(m3 ⋅hour) for each site 
cluster in all seasons. The growth rates in 2020 ranged between 1/3 to 
1/2 of the corresponding levels in 2013. 

Seasonal occupancy rates of the pollution episodes to the total hours 
are reported in Tables S2–S5 of the SI. The annual average occupancy 
rate from 2013 to 2020 at four site clusters and the rates of decline in 
2020 relative to those in 2013 can be found in Table 2. In Beijing SE and 
NW site clusters, the occupancy rates have been stable to be less than 
50% since 2017; while in Tangshan and Baoding, the occupancy rates in 
most years were higher than those in Beijing. In the four site clusters, 
compared to their respective occupancy rates in 2013, the occupancy 
rates in 2020 decreased by 27.1% for Beijing SE, 38.1% for Beijing NW, 
18.6% for Tangshan and 15.3% for Baoding respectively. Although these 
were substantial decreases, they were far lower than the proportion of 
the decline in the episodic growth rate, average concentration and peak 
concentration. The reduced occupancy rates were consistent with the 
increased average gap time between two episodes also reported in 
Tables S2–S5. In Beijing SE and Beijing NW, by 2020, except for sum-
mer, the average gap times had been more than doubled as compared to 
those in 2013. In Tangshan, the average gap time for the four seasons in 
2013 and 2020 were 26.2 (2.2) and 48.4 (3.3), respectively, and those in 
Baoding were 46.4 (5.8) and 75.0 (9.5), respectively, representing 
84.7% and 61.6% increase, respectively. 

3.2. Variable selection results and fitting performance of the models 

In linear regression for PM2.5, Table 3 reports the incremental change 
of R2 and BIC after adding a variable each time in each season in the 
Beijing SE and NW, while those for the other two site clusters are pre-
sented in Table S6 in the SI. It can be seen that when the selection of 
variables was stopped, the R2 had largely peaked. Table S7 in the SI 
reports the final selected variables and the order in all seasons in the four 

Table 1 
Seasonal average northerly wind speed (m/s) and proportion from 2013 to 2020 at four site clusters. The numbers inside the parentheses are the standard errors.  

Site Cluster Spring Summer Autumn Winter 

Average Percentage Average Percentage Average Percentage Average Percentage 

Beijing SE 2.16 (0.010) 45.3% (0.22%) 1.52 (0.006) 43.9% (0.22%) 1.69 (0.008) 59.4% (0.22%) 2.13 (0.008) 69.3% (0.20%) 
Beijing NW 1.74 (0.008) 52.6% (0.22%) 1.10 (0.005) 52.6% (0.22%) 1.28 (0.006) 65.6% (0.21%) 1.80 (0.007) 74.6% (0.19%) 
Tangshan 3.11 (0.014) 42.9% (0.22%) 1.97 (0.009) 39.8% (0.22%) 2.16 (0.010) 55.9% (0.22%) 2.41 (0.010) 61.7% (0.22%) 
Baoding 2.88 (0.012) 42.2% (0.22%) 2.27 (0.009) 45.9% (0.22%) 2.05 (0.010) 48.7% (0.23%) 2.13 (0.010) 51.1% (0.22%)  
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site clusters. The duration “Dur” was always selected first. Regarding the 
wind direction and speed variables, the three variables related to the 
northerly wind were more important and the two variables related to the 
southerly wind tended to be selected last. The boundary layer height and 
temperature were the two most important meteorological variables. 

It is noted that some regressors are correlated, for instance DEWP, 
TEMP and LogHUMI. According to the Magnus-Tetens formula (Law-
rence, 2005; Tetens, 1930), DEWP, LogHUMI and TEMP admit a 
non-linear relationship 

DEWP = − B1 + B1

{

1 − Log
(

HUMI
100

)/

A1 −
TEMP

B1 + TEMP

}− 1

(3.1)  

where A1 = 17.27 and B1 = 237.3 ◦C. With the data used in this study, 
we conduct two regression analyses of the DEWP. One is the linear 
regression of the DEWP on the other two variable, another is the non- 
linear regression according to (3.1). Fig. S1 of the SI displays the esti-
mated residual plots of the two regression, which show that the residual 
plots of the linear regression of the DEWP displayed a clear non-linear 
curvature indicating a lack of fit of the linear regression. In contrast, 
the non-liner regression according to the Magnus-Tetens formula offered 
almost perfect residual fits. As the proposed episode based air quality 
analysis is based on the linear model (2.9), we include all three variables 
in the analysis. 

The variable selection procedure is designed to remove the potential 
redundancy among the regressors. Indeed, only 5 of the 16 site cluster- 
season combinations selected DEWP and LogHUMI at the same time. For 
the other five pollutants, the final selected variable results are shown in 

Tables S8–S12 which imply the important meteorological factors are 
different among different pollutants. 

Fig. S2 displays the yearly standardized residual plots for each season 
obtained by fitting the linear regression with the selected variables in 
the four site clusters. It can be seen that the 1st and the 3rd quartiles 
largely fluctuated within [ − 0.3, 0.3]. This together with the corre-
sponding plots of the model fitted versus the observed pollution loading 
in Figs. S3–S6 of the SI suggest reasonable fits of the linear regression 
model. 

Fig. S7 in the SI reports the estimated linear regression coefficients. It 
shows that the coefficients to the episodic duration (Dur) were all 
significantly positive, those to the dew point temperature (DEMP) and 
the humidity (LogHUMI) were largely positive, and those to the air 
pressure (PRES) and boundary layer height (LogBLH) were mainly 
negative. These were consistent with the underlying geophysics and the 
existing research. 

As mentioned in the definition of the pollution episodes, the greater 
the intensity of the northerly wind before the pollution episode, the 
more thorough the cleaning and lower the pollution intensity; while the 
greater intensity of the southerly wind during the episode can increase 
the intensity of pollution. Consequently, the coefficients of MCNWS, 
SNWS and PNWS related to northerly wind were mainly negative. 
Moreover, these three variables were important for the two site clusters 
in Beijing. In the Beijing SE, except for MCNWS in spring and SNWS in 
summer, all three variables were selected into the model in all four 
seasons; in the Beijing NW, except for MCNWS in summer, PNWS in 
spring, all three variables were selected in all four seasons. The 

Table 2 
Annual average occupancy rate is from 2013 to 2020 at the four site clusters and the reduction percentages in the occupancy rate (ROccu), hourly growth rate (RGrowth), 
average concentration (RAVE) and the peak concentration (RedPeak) of PM2.5 in 2020 relative to those in 2013, respectively.  

Site Cluster 2013 2014 2015 2016 2017 2018 2019 2020 ROccu RGrowth RAVE RPeak 

Beijing SE 63.5% 63.0% 51.2% 53.8% 48.4% 45.7% 44.9% 46.3% 27.1% 45.4% 44.6% 48.2% 
Beijing NW 63.8% 58.7% 49.8% 51.4% 44.0% 45.9% 40.9% 39.5% 38.1% 44.2% 47.5% 43.2% 
Tangshan 64.2% 63.9% 58.1% 63.3% 61.6% 64.8% 53.6% 52.3% 18.6% 50.6% 43.7% 50.8% 
Baoding 55.3% 62.8% 58.2% 62.6% 63.5% 70.2% 49.0% 46.8% 15.3% 73.3% 55.9% 57.0%  

Table 3 
The cumulative R2 and BIC for successively adding a variable each time according to the initial variable ordering in each season using eight-year data in Beijing SE and 
Beijing NW site clusters, where the variables marked with an asterisk were the last variables in the final variable ordering in the linear regression model for episode- 
wise PM2.5 loading.  

(a) Beijing SE 

Spring variables Dur LogBLH PNWS TEMP LogHUMI MCSWS SNWS(*) MCNWS SSWS PRES DEWP PSWS 
R2 0.84 0.87 0.87 0.89 0.90 0.90 0.91 0.92 0.92 0.93 0.93 0.94 
BIC 973 966 967 967 965 966 965 965 968 968 965 968 

Summer variables Dur MCNWS DEWP LogBLH PNWS MCSWS(*) SNWS TEMP PSWS PRES SSWS LogHUMI 
R2 0.88 0.89 0.91 0.91 0.92 0.93 0.93 0.94 0.94 0.94 0.94 0.94 
BIC 878 876 871 872 872 870 873 874 875 874 876 880 

Autumn variables Dur MCSWS LogBLH TEMP PRES MCNWS DEWP SNWS PNWS(*) PSWS LogHUMI SSWS 
R2 0.77 0.79 0.81 0.82 0.83 0.84 0.86 0.86 0.87 0.88 0.89 0.89 
BIC 1021 1020 1018 1017 1017 1017 1016 1017 1016 1017 1017 1018 

Winter variables Dur SNWS LogBLH MCNWS SSWS PNWS MCSWS PSWS(*) DEWP PRES LogHUMI TEMP 
R2 0.80 0.84 0.84 0.85 0.86 0.87 0.88 0.89 0.89 0.89 0.89 0.91 
BIC 1267 1259 1260 1261 1262 1261 1262 1260 1262 1264 1266 1261  

(b) Beijing NW 

Spring variables Dur TEMP LogBLH SNWS LogHUMI MCNWS PRES MCSWS(*) PSWS PNWS DEWP SSWS 
R2 0.83 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.92 0.92 0.93 0.93 
BIC 987 983 983 983 981 979 980 978 979 981 980 981 

Summer variables Dur PNWS TEMP DEWP PRES LogHUMI SNWS SSWS(*) MCNWS LogBLH MCSWS PSWS 
R2 0.85 0.87 0.89 0.91 0.92 0.93 0.93 0.94 0.94 0.95 0.95 0.95 
BIC 743 738 738 735 733 734 735 729 732 734 735 736 

Autumn variables Dur PNWS TEMP LogBLH SNWS MCNWS PSWS DEWP LogHUMI(*) MCSWS SSWS PRES 
R2 0.69 0.71 0.75 0.78 0.82 0.83 0.84 0.85 0.87 0.88 0.88 0.89 
BIC 912 911 909 907 902 903 903 904 902 902 904 902 

Winter variables Dur DEWP PNWS SNWS PSWS LogBLH LogHUMI MCNWS MCSWS(*) SSWS TEMP PRES 
R2 0.80 0.82 0.83 0.84 0.85 0.86 0.86 0.87 0.88 0.88 0.89 0.90 
BIC 1176 1171 1171 1172 1173 1175 1177 1180 1179 1181 1182 1182  
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coefficients of MCSWS, SSWS and PSWS were mainly positive, which 
was also consistent with the known effect of southerly winds. 

Table S13 reports the selected variables in all seasons of the four 
clusters by the RF. Compared with the linear regression, fewer variables 
were selected by the RF, which was especially the case in Tangshan and 
Baoding. The duration was still the most important one and was always 
selected first, and the humidity, dew point temperature and boundary 
layer height were ranked immediately after the duration as the most 
important meteorological variables. 

In the linear regression, the northerly wind related variables were 
ranked high while those related to the southerly wind were ranked low. 
However, this was not the case for the variables selected by the RF. 

Fig. F8 of the SI provides the yearly standardized residual plots for 
the random forest regression in the four site clusters. Comparing the 
residual plots with those of the linear regression in Figure S2, there were 
more outliers associated with the RF, indicating its inferior fitting 

performance. 
To compare the performance of the linear and the random forest 

regression, both the in-sample fitting and out-of-sample prediction 
RMSE were considered as the performance measures, see SI for com-
parison based on R2 whose conclusion was the same. Fig. 4 displays both 
the standardized in-sample and out-sample RMSEs for each season from 
2013 to 2020, while an overall eight-year average can be found in 
Table S14. Among the 32 season-year combinations over the eight years 
in each site cluster, the linear regression had much smaller in-sample 
and out-of-sample RMSEs than those of the RF in the majority of the 
combinations. This was the case for Beijing SE in 22 out of 32 season- 
year combinations, and 19, 29, and 27 season-year combinations for 
Beijing NW, Tangshan and Baoding, respectively. The average stan-
dardized in-sample RMSEs (standard errors) of the linear regression 
were 0.30(0.018), 0.30(0.014), 0.29(0.013), 0.27(0.016) for the four 
site clusters, while those for the random forest were 0.35(0.015), 0.39 

Fig. 4. Avearge in-sample (dashed lines) and out-of-sample (solid lines) root mean square errors (RMSE) of the linear (LR, red) and random forest (RF, blue) 
regression for four seasons from 2013 to 2020 in the four site clusters. (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 
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(0.020), 0.40(0.022), 0.39(0.027), respectively. The average out-of- 
sample RMSEs in the four site clusters for the linear regression were 
0.37(0.021), 0.39(0.019), 0.34(0.016), 0.36(0.023), and those for the 
random forests were 0.43(0.016), 0.47(0.021), 0.46(0.021), 0.45 
(0.025), respectively. These suggested the linear regression was better 
suited for the study, while offering an easy geophysical interpretation. 

3.3. Trends and changes in average pollution loading 

We report the results of the episode based air quality assessment 
using the proposed adjustment approach to remove the potential bias 
caused by the meteorological anomaly. According to the performance of 
the linear and random forest regression reported in Section 3.2, we 
considered only the linear regression in the episode based assessment. 

Figs. 5–7 display the seasonal meteorologically adjusted average 
pollution loading Î

∗

i for PM2.5, NO2 and SO2, and O3 (only spring and 
summer), respectively in the four site clusters from 2013 to 2020; while 
the results of CO and PM10 are reported in Figs. S9 and S10. The dis-
tributions of the episodic duration are displayed in Fig. 5. The episodes 
selected based on the PM2.5 were used as the episodes for the other 

species. It is observed that there was an overall downward trend in the 
average episodic pollution loading of PM2.5 and SO2 in all site clusters 
and all seasons, and the downward trend was well established since 
2016 for PM2.5 and earlier for SO2. The very substantial reduction in the 
SO2 in all seasons and especially in the winter season was very striking, 
which reflected the sustained effort in improving the way that coal is 
consumed throughout North China Plain since 2013. The declining trend 
for NO2 was less pronounced as compared with those of PM2.5 and SO2. 
The episodic average ozone was largely on an increasing trend in the 
spring and summer in all four site clusters, which was consistent with 
the previous assessment using the entire sample (Chen et al., 2018; Li 
et al., 2021). 

It is noted that there were substantial differences between the raw 
and the meteorologically adjusted episodic average concentration for all 
the pollutants, and many of the raw averages were outside the 95% 
confidence intervals of the adjusted averages. This suggests the differ-
ences between the raw and the adjusted averages were statistically 
significant, and the need for the meteorological adjustment. 

Fig. 5 also suggested that the average episodic duration had been 
stable over the eight years for all seasons and all site clusters. This is 

Fig. 5. Adjusted (blue) and original (red) average episodic pollution loading of PM2.5 for the four site clusters from 2013 to 2020, where the 95% confidence bands of 
the adjusted averages are indicated by the colored shade. The box plots depict the distributions of the episodic duration. (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web version of this article.) 
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understandable as the episodic duration is largely driven by the distri-
bution of the strong northerly cleaning processes, which is a naturally 
occurring phenomenon and would not easily show any trend. 
Figs. S12–S17 display the yearly meteorologically adjusted average total 
pollution loading P̂Li for the six pollutants. The results conveyed in these 
figures were consistent with the average episodic concentration re-
ported in Figs. 5–7. This is understandable as the average episodic 
duration had been stable over the eight years from 2013 to 2018 as 
shown in Fig. 5. 

Fig. 8 displays seasonal relative reduction in the average episodic 
pollution loading for PM2.5, NO2, SO2 and O3 from 2014 to 2020 relative 
to their respective average levels in 2013 in the four site clusters, while 
the SI reports the results for CO and PM10. The reduction in SO2 was the 
most significant and persistent with the reduction well established in 
almost all site clusters in every season since 2015. By 2020, the relative 
reductions were close to 100%. The relative reduction to the 2013 level 
came later with a smaller magnitude for PM2.5, and the significant 
reduction in NO2 tended to be even smaller and later than those of PM2.5. 

Significant reduction over the 2013 NO2 level in winter only happened 
since 2019 for the two Beijing site clusters while Tangshan and Baoding 
had not reached that yet in 2020. The situation for the spring NO2 was 
largely the same as the winter, which saw Tangshan and Beijing only 
made a significant reduction in 2020, while Baoding performed the best 
among the four site clusters for spring, summer and autumn. Baoding’s 
reduction amount in both PM2.5 and NO2 tended to be higher than the 
other three site clusters, which were partially due to Baoding’s more 
severe pollution and having more room to decline. 

The situation for the ozone was sharply different from those for the 
other three pollutants. All four site clusters had increased average 
episodic loading with those in Beijing SE being more persistent while the 
other three site clusters had more yearly variations. While this was 
consistent with the general assessment results using the entire data 
(Chen et al., 2018; Sun et al., 2021), it reveals that the ozone increase in 
the spring and summer had not been stopped yet, while the analysis 
using the whole data had shown some sign of leveling off in the ozone in 
spring and summer when the ozone level is high and the situation is 

Fig. 6. Adjusted NO2 (blue) and original NO2 (red), and the adjusted SO2 (green) and original SO2 (purple) average episodic pollution loading (in μg/(m3) for the 
four site clusters from 2013 to 2020, where the 95% confidence bands of the adjusted averages are indicated by the colored shade. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the Web version of this article.) 
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more severe. It is alarming to see the increase in the episodic ozone 
levels in autumn and winter in the four site clusters although there were 
some uncertainties with the increase in autumn in Beijing NW and 
Tangshan. The large relative increase in winter was partly due to the low 
ozone level in 2013. For instance, the winter average episodic ozone was 
only 9.1 μg/m3 in 2013 and was increased to 34.9 μg/m3 in 2020, 
leading to the 283.8% increase. Although the absolute ozone pollution 
was still relatively less severe in autumn and winter, the persistent 
increasing trends in autumn and winter, together with the wide spread 
increase in the spring and summer, suggest that the underlying ozone 
generation pathways had not been diminished in the region, and more 
efforts are needed. 

3.4. Comparison with using entire data 

An important question is how the episode based air quality assess-
ment compares with those based on the entire observations including 
those collected outside the pollution episodes in terms of the general 
trend and the yearly changes. Fig. S18 in the SI shows the meteorological 
adjusted seasonal means from 2013 to 2020 using the entire data in the 
four site clusters; see Liang et al. (2015) for the method and algorithm. 
Although the occupancy rates of the episodes (Table 2) varied from year 
to year, the two sets of results were largely consistent. 

Fig. 9 provides the yearly relative reduction in the seasonal meteo-
rologically adjusted average concentrations relative to the 2013 
adjusted average levels using all data, which is a counter-part of Fig. 8 
based on the episodic data. Comparing Figs. 8 and 9, it is found that 
there was a strong synergy between the two sets of the assessment 
measures in seasons and years among those weaker (statistically insig-
nificant) reduction changes regardless of the signs of the reductions. This 
was most noticeable in the winters of 2014–2016 for PM2.5, and for SO2 
for Baoding in the summer, autumn and winter of 2014. Table 4 reports 
the Spearman rank correlation coefficients between the episodic average 
pollution loading and the full data based average concentration and 
their respective reduction rates, while the corresponding Pearson cor-
relation coefficients are given in Table S15. It shows that except for NO2 
in autumn and O3 in summer and autumn, there were significant posi-
tive correlations for all other pollutants and seasons. For each season, 
the correlation with respect to the seasonal averages was much higher 
than the correlation on the relative reduction rates as both sets of av-
erages were largely consistent on the general trend of the pollutants, and 

less so for the relative reduction rates. Among the four species, SO2 had 
the highest correlations for almost all cases (except one), followed by 
PM2.5 with quite significant correlations. The correlations for NO2 and 
O3 were much weaker, especially for the reduction rates in summer and 
autumn. 

Our analysis showed that the episode based air quality assessment 
was more sensitive in reflecting the underlying changes in the concen-
tration than that using the entire data observations. This was most re-
flected by the assessment on the ozone with the magnitude of the 
relative changes being much larger than those using the full data. 

3.5. Discussion 

Air quality assessment is a challenging task as it involves the complex 
systems of meteorology, emission and their interaction in the open at-
mosphere, and is governed by the atmospheric chemistry and physics 
processes. For such a challenging task, there is a need to develop mul-
tiple air quality measures to gauge its severity and changes. The pro-
posed episode based air quality measure is one such effort designed to 
complement the assessment using the entire data sample from the 
viewpoint of pollution episodes. The episode based assessment provides 
a unique angle to the evolution of the air pollution in a location. 

The episodic approach is based on a data-driven algorithm to select 
the start and end of the episodes, primarily based on the PM2.5. While the 
three cities share a similar pattern of the cleaning process governed by 
the northerly wind due to their geographical location in the northern 
part of the North China Plain, different cleaning patterns in other cities 
can be learned and constructed from data with the help of statistical 
methods, leading to the episode selection rules suitable for the other 
cities. The average episodic pollution and the total pollution loading can 
be readily extended with the within episode meteorological adjustment 
almost readily carried over although the important variables may 
change from one city to another. 

4. Conclusions 

The episodic based air quality assessment was conducted in the three 
cities which revealed that the average pollution loading of four pollut-
ants PM2.5, CO, SO2 and PM10 had shown a significant downward trend 
from year 2013 to year 2020, with the episodic averages of SO2 
declining the most significantly and persistently, followed by those of 

Fig. 7. Adjusted (blue), original (red) average episodic pollution loading and adjusted average concentration using all hourly data (green) of O3 for the four site 
clusters from 2013 to 2020 in spring and summer, where the 95% confidence bands of the adjusted averages are indicated by the colored shade. (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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PM2.5, CO and PM10. Specifically, the 2020 episodic averages for SO2 
and PM2.5 were significantly lower (at 5% significance) than the corre-
sponding 2013 levels in all 16 season-site clusters combinations with the 
reduction rates ranging from 37.9% to 91.0% for SO2 and 30.2%–81.1% 
for PM2.5, while those for PM10 and CO were significantly lower than the 
corresponding 2013 levels in 15 of the total 16 season-site cluster 
combinations, with the significant reduction rates ranging from 17.1% 
to 77.9% for PM10 and 22.3%–89.3% for CO. The episodic averages for 
the NO2 had shown a less significant decline compared to the above four 
species, with only 12 season-site cluster combinations in 2020 regis-
tering a significant decline relative to the 2013 levels. Among those 12 
season-site clusters with significant reduction, the reduction rates in the 
2020 episodic averages for NO2 ranged from 12.7% to 61.3%, which 
were smaller than those of the other species. 

In sharp contrast, the episodic average ozone concentration had 
displayed a dramatic increase in all seasons since 2014 over the 2013 

levels. There were 13 season-site clusters in the three cities whose 
episodic average O3 had significantly increased in 2020 as compared to 
2013, with the increase rates in the 2020 episodic averages ranging from 
24.7% to 63.5% in spring and summer and 26.8%–283.8% in autumn 
and winter. Most of the higher increase rates happened in the autumn 
and winter, which were due to relatively lower winter levels in 2013. 
The most alarming was the widespread rise in the episodic average O3 in 
all seasons with no sign of subsiding despite a substantial reduction in 
the PM–SO2–CO cohort in the three cities. 
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the four site clusters in four seasons from 2014 to 2020. 

Table 4 
Pair-wise seasonal Spearman’s rank correlation coefficients between the average (AVE)/reduction (RED) obtained by using all the hourly data and the average/ 
reduction only on the episodes. The number of * indicates the level of significance in the association (*: p-value<0.05; **: p-value < 0.01; ***: p-value < 0.001).  

Pollutants Spring Summer Autumn Winter 

AVE RED AVE RED AVE RED AVE RED 

PM2.5 0.83*** 0.68*** 0.69 *** 0.54** 0.57*** 0.62*** 0.85*** 0.87*** 
NO2 0.70*** 0.46* 0.73*** 0.47* 0.23 0.04 0.50** 0.63*** 
SO2 0.98*** 0.78*** 0.94*** 0.52** 0.94*** 0.80*** 0.98*** 0.96*** 
O3 0.67*** 0.53** 0.67*** 0.25 0.58*** 0.26 0.46** 0.58**  
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