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Bandwidth Selection for High-Dimensional Covariance
Matrix Estimation

Yumou QIU and Song Xi CHEN

The banding estimator of Bickel and Levina and its tapering version of Cai, Zhang, and Zhou are important high-dimensional covariance
estimators. Both estimators require a bandwidth parameter. We propose a bandwidth selector for the banding estimator by minimizing an
empirical estimate of the expected squared Frobenius norms of the estimation error matrix. The ratio consistency of the bandwidth selector
is established. We provide a lower bound for the coverage probability of the underlying bandwidth being contained in an interval around
the bandwidth estimate. Extensions to the bandwidth selection for the tapering estimator and threshold level selection for the thresholding
covariance estimator are made. Numerical simulations and a case study on sonar spectrum data are conducted to demonstrate the proposed
approaches. Supplementary materials for this article are available online.

KEY WORDS: Banding estimator; Large p, small n; Ratio-consistency; Tapering estimator; Thresholding estimator.

1. INTRODUCTION

With the advance in the modern data-collection technology,
data of very high dimensions are increasingly collected in sci-
entific, social economic and financial studies, which include the
microarray data, the next generation sequencing data, record-
ings of large networks and financial observations of large port-
folios. Suppose we observe independent and identically dis-
tributed p-dimensional random variables X1, . . . , Xn with an
unknown covariance matrix � = var(X1). The covariance � is
of great importance in multivariate analysis. The sample covari-
ance Sn = n−1 ∑n

i=1(Xi − X̄n)(Xi − X̄n)′ is a popular and valid
estimator of � in conventional settings where the dimension p is
fixed and the sample size n is relative large. However, for high-
dimensional data such that p/n → c ∈ (0,∞], it is known that
Sn is no longer consistent; see Bai and Ying (1993), Bai, Silver-
stein, and Yin (1998), and Johnstone (2001) for accounts of the
issue.

There have been advances in constructing consistent covari-
ance estimators for high-dimensional data via the regularization
methods that involve thresholding or truncation. Regularization
based on the Cholesky decomposition has been considered in
Wu and Pourahmadi (2003), Huang et al. (2006), and Roth-
man, Levina, and Zhu (2010) for estimating � and its inverse.
Bickel and Levina (2008a) proposed banding the sample co-
variance Sn that truncates all subdiagonal entries beyond certain
bandwidth to zero. Cai, Zhang, and Zhou (2010) investigated
a tapering estimator which can be viewed as a soft banding on
the sample covariance, and demonstrated that it can attain the
minimax optimal rate. For random vectors which do not have a
natural ordering so that the elements of � do not decay as they
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move away from the diagonal, Bickel and Levina (2008b) pro-
posed a thresholding estimator, which was further developed by
Rothman, Levina, and Zhu (2009) and Cai and Liu (2011). Reg-
ularized estimation of �−1 has also been developed in Bickel
and Levina (2008a), Cai, Liu, and Luo (2011), and Xue and Zou
(2012).

The banding and tapering estimators require specifying the
bandwidth that defines the number of subdiagonals which are
not truncated to zero. For the thresholding estimator, a thresh-
old level needs to be determined. Bickel and Levina (2008a,
2008b) and Cai, Zhang, and Zhou (2010) showed that the per-
formance of these estimators are crucially dependent on the
choice of the bandwidth or the threshold level. Bickel and Lev-
ina (2008a, 2008b) introduced cross-validation approximations
to the Frobenius risk of estimation by repeated random splitting
of the sample to two segments. One segment of the sample was
used to estimate � and the other was employed to form cross-
validation scores for the bandwidth and the threshold level selec-
tion, respectively. The conventional sample covariance was used
to estimate � in the first segment. This can adversely affect the
performance of the bandwidth or threshold level selection due to
the sample covariance’s known defects under high dimension-
ality. For banded covariances, Qiu and Chen (2012) proposed
a method to select the bandwidth, using a by-product of their
test for the bandedness of �. Yi and Zou (2013) proposed a
bandwidth selection for the tapering estimator by minimizing
the expected squared Frobenius norm of the estimation error
matrix for Gaussian distributed data.

In this article, we employ the Frobenius risk of the banding
and the tapering estimators as the objective function, and define
the underlying bandwidth as the smallest bandwidth that mini-
mizes the objective function. By studying the objective function
under a general distributional framework, we investigate the
properties of the underlying bandwidth under a bandable co-
variance class that is better suited for the Frobenius norm. An
estimator of the bandwidth is proposed by minimizing a non-
parametric estimator of the objective function.

© 2015 American Statistical Association
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The use of the Frobenius norm, as Yi and Zou (2013) have
noted, confers easier tractability than that based on the spectral
norm. The ratio consistency of the proposed bandwidth estima-
tor to the underlying bandwidth is established. We give a lower
bound for the coverage probability of the underlying bandwidth
being contained in an interval around the estimated bandwidth.
Extensions to the tapering and thresholding estimators are con-
sidered.

The article is organized as follows. The new bandable co-
variance class and some needed assumptions are outlined in
Section 2. Section 3 defines the underlying bandwidth and gives
its properties. A ratio consistent bandwidth estimator is con-
structed and its theoretical properties are investigated in Section
4. Section 5 provides an extension to the bandwidth selection
for the tapering estimator. Section 6 extends to the threshold
level selection for the thresholding estimator. Simulation results
and a real data analysis are presented in Sections 7 and 8, re-
spectively. Technical proofs are provided in the Appendix and
the online supplementary material, respectively.

2. BANDABLE CLASSES AND ASSUMPTIONS

Let X1, X2, . . . Xn be independent and identically distributed
(IID) p-dimensional random vectors with mean μ and co-
variance matrix � = (σij )p×p. Throughout the article, || · ||F ,
|| · ||(2,2) and || · ||(1,1) denote the Frobenius, the spectral and the
�1 norms of a matrix, respectively; and C with or without sub-
scripts denotes positive constants whose value may change on
different occasions. We make the following assumptions.

Assumption 1. As n → ∞, p = p(n) → ∞ and
lim sup

n→∞
n/p ≤ C < ∞.

Assumption 2. (i) Xi = �Zi + μ, where � is a p × m matrix
of constants with m ≥ p, ��′ = �, and Z1, . . ., Zn are IID m-
dimensional random vectors such that E(Z1) = 0 and var(Z1) =
Im. (ii) For Z1 = (Z11, . . . , Z1m)T , {Z1l}ml=1 are independent,
and there exist finite constants � and ω such that E(z4

1l) = 3 + �

and E(z3
1l) = ω for l = 1, . . . , m.

Assumption 1 prescribes the mechanism governing the sam-
ple size and the dimensionality. The last part of Assumption 1
contains the “large p, small n” paradigm where p can be much
larger than n, as well as the case of p and n being the same order.
For the bandwidth selection, no specific relationship between n
and p is needed. However, for the threshold level selection dis-
cussed in Section 6, a restriction in the form of log p = o(n1/3)
is required. Assumption 2 is a version of the general multivari-
ate model employed in Bai and Saranadasa (1996) and Qiu and
Chen (2012), where {Zil}ml=1 may be viewed as the innovations
of the data.

Bickel and Levina (2008a) considered the following “band-
able” class of covariances:

U1(α,C) =
{
� : max

l2

∑
|l1−l2|>k

|σl1 l2 | ≤ Ck−α for all k > 0

and 0 < ε1 ≤ λmin(�) ≤ λmax(�) ≤ ε−1
1

}
(2.1)

for positive constants α, C and ε1. For p × p matrix M =
(ml1l2 )p×p, let Bk(M) = (ml1l2 I{|l1 − l2| ≤ k})p×p be a banded
version with a bandwidth k ∈ {0, . . . , p − 1}. Bickel and Lev-
ina (2008a) proposed Bk(Sn) as an estimator of �, where Sn is
the sample covariance, and showed that

E||Bk(Sn) − �||2(2,2) = O
{
(log(p)/n)α/(1+α)

}
if k = {log(p)/n}−1/(2+2α).

Cai, Zhang, and Zhou (2010) considered a slightly different
class

U2(α,C) =
{
� : max

l2

∑
|l1−l2|>k

|σl1 l2 | ≤ Ck−α for all k > 0

and 0 < ε2 ≤ min{σll} ≤ max{σll} ≤ ε−1
2

}
.

(2.2)

They replaced the restriction on the eigenvalues in U1(α,C) with
those on the diagonal elements. For U2(α,C), Cai, Zhang, and
Zhou (2010) proposed the tapering estimator Tk(Sn) = �T (k) ◦
Sn, where ◦ denotes the Hadamard product, and �T (k) = (

ωl1l2

)
is the weighting matrix with

ωl1l2 := k−1{(2k − |l1 − l2|)+ − (k − |l1 − l2|)+}.
Note that ωl1l2 = 1 for |l1 − l2| ≤ k, ωl1l2 = 0 for |l1 − l2| ≥
2k and ωl1l2 decreases linearly for k < |l1 − l2| < 2k. For easy
algebraic manipulation, we use 2k as the effective bandwidth
rather than k as in Cai, Zhang, and Zhou (2010).

Cai, Zhang, and Zhou (2010) showed that for k ∼ n1/(1+2α)

E||Tk(Sn) − �||2(2,2) = O{log(p)/n + n−2α/(1+2α)},
which attains the minimax convergence rate over U2(α,C). The
banding and tapering estimators are not necessarily positive
definite. One way to mitigate the problem is to obtain the spec-
tral decomposition of the covariance estimators and replace the
negative and zero eigenvalues with small positive values as sug-
gested by Cai, Zhang, and Zhou (2010).

It is clear from the analysis in Bickel and Levina (2008a)
and Cai, Zhang, and Zhou (2010) that the convergence rates of
the banding and the tapering estimators are critically dependent
on the bandwidth k, whereas the bandwidth k depends on the
unknown index parameter α of the bandable classes. However,
estimating the index parameter is a challenging problem.

We shall consider another “bandable” matrix class which is
better suited for bandwidth selection based on the Frobenius
norm. To define the new “bandable” covariance class, let us
define for k = {0, 1, . . . , p − 1},

h(k) := 1

2(p − k)

∑
|l1−l2|=k

σ 2
l1l2

= 1

p − k

p−k∑
l=1

σ 2
l l+k

to be the average of the squares of the kth subdiagonal entries.
For a fixed positive constant ν and the � in Assumption 2,

define a covariance class

G(ν, q0
p) = {

� : (i) ν−1 ≤ λmin(�) ≤ λmax(�) ≤ ν;

(ii) h(k) = o(k−1) and
∑

q>k h(q) → 0 for k → ∞ and p → ∞;

(iii) there exists a sequence q0
p → ∞ and q0

p = o(n) such that

nh(k) > (2 + |�|)λ2
max(�) for k ≤ q0

p and n large
}
. (2.3)
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The bounded largest and smallest eigenvalues in Part (i) repli-
cates that in U1(α,C). Part (ii) of (2.3) prescribes that h(k)
diminishes to zero at a rate faster than k−1 for k large. It may be
viewed as an analogue to the sparsity condition

max
l2

∑
|l1−l2|>k

|σl1 l2 | ≤ Ck−α (2.4)

in U1(α,C) and U2(α,C). Note that for another covariance ma-
trix class

F(β,M) = {� : |σlj | ≤ M(1 + |l − j |)−β for some β > 1/2},
(2.5)

Part (ii) of (2.3) is satisfied. Cai, Zhang, and Zhou (2010) estab-
lished the minimax convergence result for the Frobenius norm
under F(β,M) with β > 1. Hall and Jin (2010) also considered
this class in their innovated higher criticism test. Part (iii) of
(2.3) requires h(k) to maintain a sufficient amount of “energy”
for smaller bandwidths so that h(k) is at least of order n−1. We
note that h(k) actually starts with quite high “energy” since Part
(i) implies that nh(0) = np−1 ∑

σ 2
ll → ∞.

The reason for having the sample size n appeared in Part (iii)
is because the banding estimator depends on the sample size
n. As shown in the next section, the criterion function for the
bandwidth selection is based on the expected Frobenius norm
of the estimation error matrix of the banding estimator, which
inevitably has n involved.

The main difference between G(ν, q0
p) and U1(α,C) or

U2(α,C) is that the sparsity inG(ν, q0
p) is written in terms of h(k)

whereas that in U1(α,C)/U2(α,C) are defined via
∑

|j−l|>k |σjl|.
This difference reflects the different norms employed in these
studies. As we use the Frobenius norm, it is natural to define the
sparsity via h(k).

Two specific forms of h(k), which will be referred to repeat-
edly, are those which decay exponentially and polynomially fast
as k → ∞. In the case of the exponential decay,

h(k) = Cp(k)θ−k for some θ > 1 ; (2.6)

in the case of the polynomial decay,

h(k) = Cp(k)k−β for some β > 1. (2.7)

In both cases, {Cp(q)}p−1
q=0 are sequences bounded within

[C1, C2] for C1 ≤ C2. It can be shown that Part (iii) of (2.3)
is satisfied under (2.6) or (2.7) with q0

p = log n/(2 log θ ) for the
exponential decay and q0

p = n1/(2β) for the polynomial decay.

3. UNDERLYING BANDWIDTH

In this section, we define the underlying bandwidth for the ma-
trix class G(ν, q0

p). The properties of the underlying bandwidth
are given, which provide the basics for its empirical estimation
in the next section.

Consider the standardized square of Frobenius norm for
Bk(Sn) − �,

p−1||Bk(Sn) − �||2F = p−1
∑

|l1−l2|≤k

(σ̂l1l2 − σl1l2 )2

+p−1
∑

|l1−l2|>k

σ 2
l1l2

. (3.1)

Comparing with the spectral norm, the Frobenius norm is more
tractable in the context of the bandwidth estimation. The objec-
tive function is

ÕbjB(k) := p−1E{||Bk(Sn) − �||2F }.
The underlying bandwidth is kB = min{k′|k′ =
argmin
0≤k<p

ÕbjB(k)}. As ÕbjB(k) is discrete, kB exists and

we choose the smallest minimizer in the case of multiplicity.
We now analyze the properties of kB for � ∈ G(ν, q0

p). Denote
fl1l2 = ∑

h �2
l1h

�2
l2h

, where � = (�jl)p×m is defined in Assump-
tion 2. A derivation given in Appendix shows that

ÕbjB(k) = 1

np
tr(�2) + (1 − n−1)Mn(k)

+ �

np
(1 − n−1)2

∑
|l1−l2|≤k

fl1l2 , (3.2)

where

Mn(k) = 1

p

∑
|l1−l2|>k

σ 2
l1l2

+ 1

np

∑
|l1−l2|≤k

σl1l1σl2l2 . (3.3)

As tr(�2)/(np) is irrelevant to k, we only minimize

ObjB(k) = Mn(k) + �
∑
q≤k

R(q), (3.4)

where R(q) = (np)−1(1 − n−1)
∑

|l1−l2|=q fl1l2 . For Gaussian
distributed data, � = 0 and ObjB(k) = Mn(k). The first term
of Mn(k) in (3.3) measures the bias caused by the banding es-
timation, and the second term penalizes for larger k. Therefore,
ObjB(k) can be viewed as a penalized risk function of the band-
width.

The following lemma provides the basic properties of Mn(k)
and R(k) in ObjB(k).

Lemma 1. For � ∈ G(ν, q0
p),

(i) Mn(k) ∼ k/n + p−1 ∑
q>k 2(p − q)h(q) → 0 for k →

∞ and k = o(n);
(ii)

∑p−1
q=0 R(q) ≤ ν2/n.

Lemma 1 and (3.4) imply that Mn(k) is at least at the order
k/n. Since

∑
q≤k R(q) ≤ C/n for a constant C, Mn(k) is the

leading order of ObjB(k) as k → ∞.
Let σ(1) ≤ σ(2) ≤ · · · ≤ σ(p) be the ordered diagonal elements

{σll}pl=1 of �. Define a = 2σ 2
(p), b = σ 2

(1)/2 and

ka,n = min{k : an−1 − h(k) > 0} − 1

and

kb,n = max{k : bn−1 − h(k) < 0}. (3.5)

Denote k̃B be the smallest minimizer of Mn(k), and 
·� be the in-
teger truncation function. The following lemma provides ranges
for k̃B and kB .

Lemma 2. Under Assumptions 1 and 2 and for � ∈ G(ν, q0
p),

(i) k̃B ∈ [ka,n, kb,n], ka,n ≥ q0
p and kb,n = o(n);

(ii) kB ∈ [ka,n − L, kb,n + L] for L = 
2|�|ν4� + 1.
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The lemma shows that kB has a broader range than k̃B . This
is due to the uncertainty introduced by |�|R(k) in (3.4). The
ranges given in Lemma 2 prepare for k̃B/kB → 1 as n → ∞,
the key result of this section. Since ka,n ≥ q0

p → ∞, it follows
from Lemma 1 that Mn(k) is the leading order term of ObjB(k)
for k ∈ [ka,n − L, kb,n + L]. This suggests that we can minimize
Mn(k) directly.

The main thrust of the article is to minimize an empirical
estimator of Mn(k) to obtain an estimator of k̃B , which may be
viewed as a kind of M-estimation. As in the M-estimation, a
condition is needed to guarantee the existence of a unique and
well-separated minimum of the objective function. Since Mn(k)
is the leading order term of ObjB(k), a condition that serves this
purpose is that, for any small δ > 0 and n large enough,

inf
k:|k−k̃B |>δk̃B

nk̃−1
B

{
Mn(k) − Mn(k̃B)

}
> C. (3.6)

Condition (3.6) is similar to the second equation of (5.8) in
van der Vaart (2000), except that (3.6) imposes a minimum
rate of separation k̃Bn−1 between Mn(k) and Mn(k̃B). The latter
is because that Mn(k̃B) shrinks to zero at the rate of k̃B/n as
revealed by Lemma 1. The following lemma shows that under
(3.6), kB and k̃B are ratioly equivalent.

Lemma 3. For � ∈ G(ν, q0
p) and under (3.6), k̃B/kB → 1 as

n → ∞.

As the condition (3.6) is a key condition to the M-estimation
for the underlying bandwidth, we provide two sufficient condi-
tions to (3.6) in the online supplementary material to show it can
be satisfied if h(k) decays either exponentially or polynomially.

3.1 Exponentially Decayed h(k)

In this case, h(k) = C(k)θ−k as specified in (2.6) with
{C(k)}p−1

k=0 ⊂ [C1, C2]. It is shown in the Appendix that kB ∼
log n/ log θ . A proof in the supplementary material shows that
(3.6) is satisfied under the exponential decay.

3.2 Polynomially Decayed h(k)

If h(k) decays polynomially as specified in (2.7), kB ∼ n1/β as
shown in the Appendix. If max

k∈[ka,n,kb,n]
|C(k) − C| → 0 as n, p →

∞, and the diagonal elements {σll}pl=1 are regulated in certain
ways such that

max
k∈[ka,n,kb,n]

p−1
∑

|l1−l2|=q

σl1l1σl2l2 → 2C0 as p → ∞, (3.7)

(3.6) is satisfied. One such situation is when all the diagonal el-
ements are equal. If the diagonal entries differ, but are indepen-
dent realizations from m super-populations, for a fixed integer
m, such that {σll}hpm

l=(h−1)pm+1 ∼ Fh, where Fh is the hth super-
population distribution with mean φh and finite variance for
h = 1, . . . , m and pm = p/m. It is shown in the online supple-
mentary material that (3.7) is satisfied with C0 = m−1 ∑m

h=1 φ2
h.

Now let us put our analysis in the context of existing results
on the banding and tapering estimation. Recall that Bickel and
Levina (2008) found that if k ∼ {log(p)/n}−1/(2α+2), the spec-
tral risk of the banding estimator is Op{(log(p)/n)α/(α+1)} uni-
formly for � ∈ U1(α,C). Cai, Zhang, and Zhou (2010) showed

that setting k ∼ n1/(2α+1) leads to the minimax optimal rate of
Op{n−2α/(2α+1) + log(p)/n} for the tapering estimator under the
spectral norm for � ∈ U2(α,C). For the Frobenius norm, they
showed that the minimax rate for � ∈ U2(α,C) is equivalent
to the minimax rate for the smaller class F(β,M) in (2.5) with
β > 1, and the bandwidth of the tapering estimator correspond-
ing to the minimax optimal rate is k ∼ n1/(2β). By inspecting
their proofs, it can be shown that the banding estimator with
k ∼ n1/(2β) can also attain the minimax lower bound under the
Frobenius norm. And the minimax rate of the banding and ta-
pering estimators under F(β,M) is attained at covariances with
|σl j | = M|l − j |−β . The latter model coincides with the poly-
nomial decay model (2.7) with h(k) = Mk−2β . We note that this
minimax bandwidth rate of k ∼ n1/(2β) is the rate of the kB under
the polynomial decay as shown in (A.8). Since kB minimizers
the Frobenius risk, the banding estimator with the kB should
attain the minimax convergence rate under the Frobenius norm.

4. CONSISTENT BANDWIDTH ESTIMATOR

We consider in this section estimating the bandwidth for the
banding estimator. A proposal for the tapering estimator will be
given in Section 5. As outlined in the previous sections, there are
two bandwidths kB and k̃B , which are asymptotically equivalent
to each other under (3.6). However, it is easier to estimate k̃B

than kB since Mn(k) is more readily estimated.
Clearly, if � = 0 as in the Gaussian case, ObjB(k) = Mn(k)

which implies kB = k̃B . However, if � 
= 0, it is difficult to
estimate ObjB(k) = Mn(k) + �

∑
q≤k R(q) due to its requiring

estimating R(k) and �.
According to (3.3), to estimate Mn(k), we need to estimate,

respectively,

W (k) := p−1
∑

|l1−l2|>k

σ 2
l1l2

and V (k) := p−1
∑

|l1−l2|≤k

σl1l1σl2l2 .

Note that,

∑
|l1−l2|>k

σ 2
l1l2

= 2
p−1∑

q=k+1

(p − q)h(q) and

∑
|l1−l2|≤k

σl1l1σl2l2 = g(0) + 2
k∑

q=1

g(q),

where g(q) := ∑p−q

l=1 σllσl+q l+q . Define estimators of h(q) and
g(q):

ĥ(q) = (p − q)−1
p−q∑
l=1

{ 1

P 2
n

∗∑
i,j

(XilXil+q)(XjlXjl+q) − 2
1

P 3
n

×
∗∑

i,j,k

XilXkl+q(XjlXjl+q )

+ 1

P 4
n

∗∑
i,j,k,m

XilXjl+qXklXml+q

}
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and

ĝ(q) =
p−q∑
l=1

{ 1

P 2
n

∗∑
i,j

X2
ilX

2
j l+q − 1

P 3
n

×
∗∑

i,j,k

(
XilXklX

2
j l+q + Xi l+qXk l+qX

2
j l

)

+ 1

P 4
n

∗∑
i,j,k,m

XilXj l+qXklXm l+q

}
,

where
∗∑

denotes summation over different subscripts and P b
n =

n!/(n − b)!. These two estimators are linear combinations of U-
statistics of different orders with the first term being the dominat-
ing term, respectively. Let Ŵ (k) := 2p−1 ∑p−1

q=k+1(p − q)ĥ(q)

and V̂ (k) := p−1{ĝ(0) + 2
∑k

q=1 ĝ(q)}, which are unbiased es-
timators of W (k) and V (k), respectively. Then, an unbiased
estimator of Mn(k) is

M̂n(k) := Ŵ (k) + n−1V̂ (k). (4.1)

As Lemmas 2 and 3 indicate k̃B ∈ [ka,n, kb,n] and k̃B/kB → 1,
kB can be estimated by

k̂B = argmin
k1,n≤k≤k2,n

M̂n(k) (4.2)

where [k1,n, k2,n] constitutes a range for the minimization. In
light of the analysis given in the previous section, we may choose
k1,n = 
ka,n/r1� and k2,n = min{r2kb,n, n} for some positive
constants r1 and r2 ≥ 1. Although ka,n and kb,n are unknown,
they can be estimated via ĥ(q) and the largest and smallest
marginal sample variances, σ̂(1) and σ̂(p), respectively. Then, the
estimates of ka,n and kb,n are

k̂a,n = min{k : ân−1 − ĥ(k) > 0} − 1

and

k̂b,n = max{k : b̂n−1 − ĥ(k) < 0},
where â = 2σ̂ 2

(p) and b̂ = σ̂ 2
(1)/2. Accordingly, we can choose

k̂1,n = 
k̂a,n/r1� and k̂2,n = min{r2k̂b,n, n} upon given r1 and
r2 ≥ 1. In practice, we may choose r1 = r2 = 2.

Alternatively, we can minimize M̂n(k) over a more conserva-
tive interval [0, n] so that

k̂B = argmin
0≤k≤n

M̂n(k), (4.3)

by making the relationship between n and p more restrictive.

Theorem 1. Under Assumptions 1 and 2, (3.6), if � ∈
G(ν, q0

p) and (kb,n − ka,n)/ka,n ≤ C, then for k̂B given in (4.2),

k̂B/k̃B

p→ 1 as n → ∞.

As k̃B/kB → 1 under (3.6), Theorem 1 implies that k̂B is a
ratioly consistent estimator of kB . The same ratio consistency
result can be established for the bandwidth estimator (4.3) un-
der Assumption 2, (3.6) and n = O(p1/3). The latter is more
restrictive than Assumption 1. That (kb,n − ka,n)/ka,n ≤ C as-
sumed in Theorem 1 implies that ka,n and kb,n are of the same
order. Derivations leading to (A.5) and (A.8) in the Appendix
show that it is satisfied under both the exponential and polyno-
mial decays of h(k).

In the following, we evaluate the estimation error of k̂B to k̃B

by providing a lower bound on the probability of k̃B being in-
cluded in an interval around k̂B . To this end, we need a condition
on the behavior of Mn(k) in additional to (3.6).

Assumption 3. There exist a constant γ ≥ 1 and an integer
τ ≥ 1 such that for any small δ > 0, any τ < η < δk̃B and n
large enough

inf
k∈Jη

{Mn(k) − Mn(k̃B)} ≥ Cηn−γ , (4.5)

where Jη = {k : η ≤ |k − k̃B | < 2η} ∩ [ka,n, kb,n].

While (3.6) dictates that the absolute deviation between k̃B

and any k outside (k̃B(1 − δ), k̃B(1 + δ)) is at least a constant
multiple of n−1k̃B , (4.4) prescribes that the deviation between
k̃B and k inside (k̃B(1 − δ), k̃B(1 + δ)) is at least |k̃B − k|n−γ

for γ ≥ 1, which is much smaller than n−1k̃B .
Denote C1,p(k) = {2(p − k)}−1 ∑

|l1−l2|=k σl1l1σl2l2 . In the fol-
lowing, we show that Assumption 3 is satisfied for both the ex-
ponential and polynomial decay of h(k), whose proof is in the
online supplementary material.

Proposition 1. For � ∈ G(ν, q0
p), (i) if h(q) = C2,p(q)θ−q for

θ > 1, and max
q∈[ka,n,kb,n]

|Ci,p(q) − Ci | → 0 as n → ∞ for i = 1, 2,

then Assumption 3 holds for τ = 1 and γ = 1;
(ii) if h(q) = C2,p(q)q−β for β > 1 and max

q∈[ka,n,kb,n]
|Ci,p(q) −

Ci | = o(n−1/β ) as n → ∞ for i = 1, 2, then Assumption 3 holds
for τ = 1 and γ = 1 + 1/β.

Theorem 2. Under Assumptions 1, 2, 3 and (3.6), if � ∈
G(ν, q0

p), (kb,n − ka,n)/ka,n ≤ C and log(k2,n)
∑

q>k1,n

h(q) = o(1),

then P (k̃B ∈ [k̂B − τ, k̂B + τ ]) = 1 − o(n2γ−1p−1).

The proof of Theorem 2 is given in the online supplementary
material. Recall that k1,n = 
ka,n/r1� and k2,n = min{r2kb,n, n}
for r1, r2 ≥ 1. Derivations given in (A.7) and (A.9) show that
log(k2,n)

∑
q>k1,n

h(q) = o(1) under both the exponential and
polynomial decays respectively for any positive constants r1

and r2. Since τ is usually unknown, [k̂B − τ, k̂B + τ ] is not a
confidence interval of k̃B . We may call it a concentration interval.
Theorem 2 shows that the probability that k̃B is included in the
interval converges to 1 if n2γ−1p−1 is bounded from infinity. For
Gaussian data, � = 0 and kB = k̃B . Hence, the concentration
interval is also the one for kB .

5. EXTENSION TO TAPERING ESTIMATION

The analysis we have made for the banding estimator can
be extended to the tapering estimator of Cai, Zhang, and Zhou
(2010). The underlying bandwidth for the tapering estimator
Tk(Sn) can be defined via the standardized squared Frobenius
norm p−1||Tk(Sn) − �||2F . It can be verified that

p−1||Tk(Sn) − �||2F
= p−1

{ ∑
|l1−l2|≤k

(σ̂l1l2 − σl1l2 )2 +
∑

|l1−l2|>2k

σ 2
l1l2

+
∑

k<|l1−l2|≤2k

(ωl1l2 σ̂l1l2 − σl1l2 )2

}
. (5.1)
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Table 1. Average and standard deviation in parentheses of the proposed bandwidth estimators and Bickel and Levina’s CV estimators (BL) for
the banding estimation under the covariance Design (A) with θ−1 = 0.7 and θ−1 = 0.9 in (7.2) for the standard normal and standardized t5

innovations

Covariance (A) with θ−1 = 0.7

Normal t-distribution

n p True Proposed BL True Proposed BL

40 40 5 4.65(1.059) 4.40(1.616) 5 4.76(1.049) 4.76(2.010)
40 200 5 4.71(0.528) 5.06(2.206) 5 4.69(0.538) 5.28(2.716)
40 400 5 4.73(0.442) 5.43(2.516) 5 4.78(0.436) 5.97(3.409)
40 1000 5 4.87(0.332) 5.98(3.510) 5 4.86(0.361) 6.75(3.959)
60 40 5 5.35(1.169) 5.35(1.799) 5 5.34(1.187) 5.70(2.947)
60 200 5 5.26(0.483) 5.65(2.149) 5 5.23(0.465) 6.38(2.677)
60 400 5 5.16(0.372) 6.28(2.865) 5 5.17(0.379) 6.36(3.250)
60 1000 5 5.11(0.308) 6.93(3.695) 5 5.09(0.291) 7.52(3.869)

Covariance (A) with θ−1 = 0.9
40 40 17 17.45(6.329) 17.99(8.154) 17 17.32(6.808) 24.06(8.613)
40 200 17 17.23(2.614) 16.37(4.970) 17 17.01(2.335) 16.49(5.506)
40 400 17 17.12(1.738) 16.38(5.316) 17 16.96(1.685) 16.14(4.985)
40 1000 17 17.02(1.084) 17.84(7.044) 17 16.99(1.005) 17.93(7.565)
60 40 19 19.58(6.894) 22.24(11.38) 19 19.16(6.228) 28.23(10.153)
60 200 19 19.01(2.750) 17.69(4.537) 19 19.08(2.633) 19.23(5.446)
60 400 19 19.05(1.766) 18.89(5.294) 19 19.04(1.876) 19.36(6.092)
60 1000 19 19.00(1.063) 19.93(6.696) 19 18.99(1.156) 20.56(6.901)

Taking the expectation, the risk of the tapering estimation is

ÕbjT (k) = p−1E{||Tk(Sn) − �||2F }
= (np)−1tr(�2) + (1 − 1/n) ObjT (k),

where

ObjT (k) = Nn(k) + �(np)−1(1 − 1/n)
( ∑

|l1−l2|≤k

fl1l2

+
∑

k<|l1−l2|≤2k

ω2
l1l2

fl1l2

)

Table 2. Average and standard deviation in parentheses of the proposed bandwidth estimators and Bickel and Levina’s CV estimators (BL) for
the banding estimation under the covariance Design (B) and (C) with ξ = 0.5 and β = 1.5 in (7.2) for the standard normal and standardized t5

innovations

Covariance (B)

Normal t-distribution

n p True Proposed BL True Proposed BL

40 40 2 1.70(0.585) 1.81(0.948) 2 1.79(0.618) 2.44(1.739)
40 200 2 1.88(0.330) 2.38(1.497) 2 1.89(0.318) 2.81(2.171)
40 400 2 1.96(0.200) 2.81(1.914) 2 1.96(0.196) 3.11(2.352)
40 1000 2 2.00(0.063) 3.33(2.611) 2 1.98(0.128) 4.68(3.956)
60 40 2 2.08(0.511) 2.16(1.079) 2 2.10(0.523) 2.49(1.826)
60 200 2 2.01(0.099) 2.59(1.406) 2 2.01(0.141) 3.15(2.147)
60 400 2 2.00(0.045) 2.98(1.949) 2 2.00( 0 ) 4.21(3.042)
60 1000 2 2.00( 0 ) 3.81(2.769) 2 2.00( 0 ) 4.77(3.783)

Covariance (C)
40 40 2 1.74(0.842) 1.90(1.022) 2 1.77(0.873) 2.44(1.882)
40 200 2 1.76(0.462) 2.38(1.470) 2 1.75(0.473) 3.03(2.322)
40 400 2 1.85(0.369) 2.88(2.060) 2 1.88(0.337) 3.31(2.492)
40 1000 2 1.95(0.214) 3.23(2.360) 2 1.94(0.237) 4.15(3.444)
60 40 2 2.17(0.869) 2.23(1.185) 2 2.17(0.879) 2.85(2.025)
60 200 2 2.05(0.219) 2.74(1.570) 2 2.08(0.323) 3.34(2.673)
60 400 2 2.02(0.147) 3.02(1.874) 2 2.03(0.159) 3.77(2.752)
60 1000 2 2.00 ( 0 ) 3.79(2.666) 2 2.00(0.017) 3.92(2.912)
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Table 3. Average and standard deviation in parentheses of the proposed bandwidth estimators for the tapering estimation under the covariance
Design (A) with θ−1 = 0.7 and θ−1 = 0.9, (B) and (C) with ξ = 0.5 and β = 1.5 in (7.2) and (7.3) for the standard normal and standardized t5

innovations

Normal t-distribution Normal t-distribution

n p True Proposed True Proposed True Proposed True Proposed

Covariance (A) with θ−1 = 0.7 Covariance (A) with θ−1 = 0.9
40 40 3 3.42(0.741) 3 3.49(0.791) 11 10.97(3.251) 11 10.82(3.364)
40 200 3 3.40(0.490) 3 3.34(0.476) 11 11.47(1.691) 11 11.33(1.492)
40 400 3 3.36(0.479) 3 3.33(0.471) 11 11.47(1.205) 11 11.32(1.136)
40 1000 3 3.27(0.442) 3 3.26(0.439) 11 11.37(0.744) 11 11.35(0.679)
60 40 4 3.83(0.789) 4 3.84(0.819) 12 12.26(3.595) 12 12.04(3.101)
60 200 4 3.90(0.342) 4 3.93(0.299) 13 12.61(1.757) 13 12.51(1.387)
60 400 4 3.97(0.176) 4 3.97(0.180) 13 12.66(1.209) 13 12.63(1.143)
60 1000 4 4.00( 0 ) 4 4.00( 0 ) 13 12.70(0.738) 13 12.68(0.765)

Covariance (B) Covariance (C)
40 40 2 1.60(0.549) 2 1.68(0.516) 2 1.64(0.677) 2 1.64(0.659)
40 200 2 1.81(0.391) 2 1.82(0.385) 2 1.69(0.463) 2 1.71(0.456)
40 400 2 1.91(0.281) 2 1.90(0.301) 2 1.80(0.400) 2 1.82(0.383)
40 1000 2 1.98(0.140) 2 1.97(0.171) 2 1.92(0.272) 2 1.91(0.292)
60 40 2 1.94(0.403) 2 1.94(0.401) 2 1.93(0.618) 2 1.96(0.653)
60 200 2 2.00( 0 ) 2 2.00(0.056) 2 1.99(0.155) 2 1.99(0.161)
60 400 2 2.00( 0 ) 2 2.00( 0 ) 2 2.00(0.045) 2 2.00( 0 )
60 1000 2 2.00( 0 ) 2 2.00( 0 ) 2 2.00( 0 ) 2 2.00( 0 )

and

Nn(k) = 1

p

∑
|l1−l2|>2k

σ 2
l1l2

+ 1

np

∑
|l1−l2|≤k

σl1l1σl2l2

+ 1

p

∑
k<|l1−l2|≤2k

(1 − ωl1l2 )2σ 2
l1l2

+ 1

np

∑
k<|l1−l2|≤2k

ω2
l1l2

σl1l1σl2l2 .

The underlying bandwidth of the tapering estimator is kT =
min{k′|k′ = argmin

0≤k<p/2
ÕbjT (k)}. Similar to the banding estimator,

the minimizer of ÕbjT (k) is equivalent to that of ObjT (k). Just
like Mn(k) is the dominant term of ObjB(k), Nn(k) dominates
ObjT (k) and the minimization of ObjT (k) can be carried out by
minimizing Nn(k).

Denote ωq to be the tapering weight for |l1 − l2| =
q. using ĥ(q) and ĝ(q) in the previous section, we de-
fine W̃ (k) := 2p−1 ∑2k

q=k+1(1 − ωq)2(p − q)ĥ(q) and Ṽ (k) :=
2p−1 ∑2k

q=k+1 ω2
q ĝ(q). An unbiased estimator of Nn(k) is

N̂n(k) := Ŵ (2k) + W̃ (k) + n−1{V̂ (k) + Ṽ (k)}, (5.2)

where Ŵ (2k) and V̂ (k) are estimators used in the estimation of
Mn(k) for the banding estimation. The proposed estimator for
kT is

k̂T = argmin
0≤2k≤n

N̂n(k) (5.3)

by noting that the tapering estimator used 2k as the effective
bandwidth. Denote k̃T to be the smallest minimizer of Nn(k).
An analysis on the bandwidths kT and k̃T may be carried out
in a similar fashion to what we have done for kB and k̃B for
the banding estimator. The ratio convergence of k̂T to kT may
be established under certain conditions. We will evaluate the

empirical performance of k̂T in the simulations and the case
study in Sections 7 and 8.

6. EXTENSION TO THRESHOLDING ESTIMATION

Both the banding and tapering estimators require the vari-
ables in X having a natural ordering such that the correlation
decays as two variables are further apart. For covariances not
satisfying such ordering, Bickel and Levina (2008b) proposed
the thresholding estimator under the following covariance class:

V(q, c0(p),M) =
{
� : σl1l1 ≤ M,

p∑
l2=1

|σl1 l2 |q ≤ c0(p), for all l1

}
(6.1)

for a q ∈ (0, 1) and some positive function c0(p). For any p × p

matrix M = (ml1l2 )p×p, the thresholding operator is

Ds(M) = (ml1l2 I{|ml1 l2 | ≥ s})p×p

with a threshold level s. Bickel and Levina (2008b) proposed
Dtn(Sn) as an estimator of �, where tn = √

2t(log p)/n for a
positive threshold parameter t, and showed that, if (log p)/n =
o(1),

||Dtn(Sn) − �||(2,2) = O
{
c0(p)(log(p)/n)(1−q)/2

}
. (6.2)

See Rothman, Levina, and Zhu (2009) and Cai and Liu (2011)
for related studies.

The Frobenius risk function for the thresholding estimator
can be explicitly expressed, as shown in the following propo-
sition. Let φ(·) and �̄(·) be the standard normal density and
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Figure 1. Boxplots of the Frobenius and spectral loss of the banding estimator with the proposed bandwidth selector (PB) and Bickel and
Levina’s selector (BL), the tapering estimator with the proposed bandwidth selector (PT) and Cai and Yuan’s adaptive blocking estimator (CY)
for covariance Deign (A) with θ = 0.7−1 and Design (B) with ξ = 0.5 and β = 1.5, n = 40, p = 1000 and Gaussian data.

upper tail probability functions, respectively, and ÕbjD(t, �) =
E{||Dtn(Sn) − �||2F }.

Proposition 2. Suppose log p = o(n1/3) and for any 1 ≤ l ≤
p, there exists a positive constant Hl such that E

[
exp{t(X1l −

μl)2}] < ∞ when |t | < Hl , then, for any � = (σl1l2 )p×p,
ÕbjD(t, �) = ObjD(t, �)

(
1 + o(1)

)
, where

ObjD(t, �) =
p∑

l1,l2=1

{
g2

l1l2

n

[
η

(1)
l1l2

φ
(
η

(1)
l1l2

)

+�̄
(
η

(1)
l1l2

)
+ η

(2)
l1l2

φ
(
η

(2)
l1l2

)
+ �̄

(
η

(2)
l1l2

)]
+σ 2

l1l2

[
�̄

(
−η

(1)
l1l2

)
− �̄

(
η

(2)
l1l2

)] }
, (6.3)

η
(1)
l1l2

= √
n(tn − σl1l2 )/gl1l2 , η

(2)
l1l2

= √
n(tn + σl1l2 )/gl1l2 and

g2
l1l2

= var{(X1l1 − μl1 )(X1l2 − μl2 )}.
The proof is given in the online supplementary material. The

sub-Gaussian condition in the theorem is required to use the
moderate deviation results. However, if a standardization is used
as in Cai and Liu (2011), the sub-Gaussian assumption can be
relaxed. The standardization allows moderate deviation results
for self-normalized statistics, which requires less assumption as
shown in Jing, Shao, and Wang (2003).

From Proposition 3, it is seen that ObjD(t, �) is the lead-
ing order term of ÕbjD(t, �). We use ObjD(t, �) as a substi-
tute of ÕbjD(t, �). Under Assumption 2, it can be shown that
g2

l1l2
= σl1l1σl2l2 + σ 2

l1l2
+ �fl1l2 . For simplicity, we focus on the

normally distributed data in this section such that � = 0 and
g2

l1l2
= σl1l1σl2l2 + σ 2

l1l2
. Therefore, to estimate g2

l1l2
, it is suffice

to estimate σl1l2 .
Note that η

(1)
l1l2

, η
(2)
l1l2

, and tn are continuous and differentiable
functions. So, ObjD(t, �) is continuous and differentiable with
respect to t. Therefore, the minimum of ObjD(t, �) exists on
any closed interval [0, B] for B > 0. Define the underlying
threshold level as

t0(�) = arg min
t∈[0,B]

ObjD(t, �). (6.4)

Before we present an algorithm to find an estimate of t0(�), we
review the cross-validation (CV) approach proposed in Bickel
and Levina (2008b), which was designed to approximate the
Frobenius risk ÕbjD(t, �). They proposed splitting the original
sample into two groups of size n1 and n2 randomly for N times.
In the vth split, let Sv

1 and Sv
2 be the sample covariances based

on the two subsamples, respectively. The estimated Frobenius
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risk with respect to t is

R̂D(t) = 1

N

N∑
v=1

||Dtn(Sv
1 ) − Sv

2 ||2F (6.5)

and the estimated threshold level is

t̂B L = arg min
t∈[0,B]

R̂D(t). (6.6)

Similar approach has been used in Bickel and Levina (2008a) to
select the bandwidth for the banding estimator, and in Cai and
Liu (2011) for the adaptive thresholding estimator. Due to the
inconsistence of Sv

2 , R̂D(t) is unreliable for ÕbjD(t, �), which
may result in unstable threshold selection as revealed in our
simulation study.

We propose an iterative procedure for selecting the thresh-
old level t which makes use of the derived expressions for the
Frobenius risk in Proposition 3. We use ÔbjD(t, Dt̂n,B L

(Sn)) for

t̂n,B L =
√

2t̂B L(log p)/n as an initial estimate of ObjD(t, �)
where Dt̂n,B L

(Sn) is the thresholding estimator of � with the
Bickel and Levina’s threshold selector t̂B L. In the computation
of ÔbjD(t, Dt̂n,B L

(Sn)), all the gl1l2 , η
(1)
l1l2

and η
(2)
l1l2

appeared in
(6.3) are replaced by their estimates implied under Dt̂n,B L

(Sn).
Then, the selected threshold level in the first iteration is

t̂1 = arg min
t∈[0,B]

ÔbjD(t, Dt̂n,B L
(Sn)), (6.7)

which may be viewed as a refinement of Bickel and Levina’s
approach.

Having acquired the t̂h−1 for a h ≥ 1, the hth iterative thresh-
old estimator is

t̂h = arg min
t∈[0,B]

ÔbjD(t, Dt̂n,h−1
(Sn)), (6.8)

where t̂n,h−1 =
√

2t̂h−1(log p)/n. Simulations given in the next
section demonstrate that the algorithm tends to converge within
five iterations and had superior performance over Bickel and
Levina’s CV method.

7. SIMULATION RESULTS

We report results of simulation studies which were designed
to evaluate the empirical performance of the proposed band-
width and threshold estimators for the banding, tapering, and
thresholding covariance estimators. We also compared with the
cross-validation estimator of Bickel and Levina (2008a,b) and
SURE of Yi and Zou (2013).

IID p-dimensional random vectors were generated according
to

Xi = �
1
2 Zi, (7.1)

where Zi = (Zi1, . . . , Zip)
′

and the innovations {Zij }pj=1 were
IID from (i) N (0, 1) and (ii) the standardized t-distribution with
degree of freedom 5 (t5) so that they have zero mean and unit
variance. For the tapering estimation, we compared the pro-
posed bandwidth estimator with SURE of Yi and Zou (2013) for
N (0, 1), and the standardized Gamma(1, 0.5), Gamma(0.5, 1),
Gamma(0.3, 1), and Gamma(0.1, 1) distributed innovations,
which correspond to the excess kurtosis � being 0, 6, 12, 20,

and 60, respectively.

Two designs of covariance structures for � = (σl1l2 )p×p were
considered

(A):σl1l2 = θ−|l1−l2| for θ > 1;

(B):σl1l2 = I(l1 = l2) + ξ |l1 − l2|−βI(l1 
= l2)

for ξ ∈ (0, 1) and β > 1, (7.2)

which prescribe the exponential and polynomial decay, re-
spectively. In the simulation, we chose θ = 0.7−1, 0.9−1, and
ξ = 0.5 and β = 1.5, respectively.

We also considered a covariance structure to confirm the
discussion made regarding the unequal diagonal entries asso-
ciated with the polynomial decay in Section 3. Specifically,

let {σll}hp
′

l=(h−1)p′+1
iid∼ χ2

h for h = 1, . . . , 10, and p′ = p/10. Let

� = diag(σ 1/2
11 , . . . , σ

1/2
pp ). The third design (Design (C)) of �

was

� = ��� and � = (ρl1l2 ) with

ρl1l2 = I(l1 = l2) + 0.5|l1 − l2|−1.5I(l1 
= l2). (7.3)

The random generation of the diagonal elements made the col-
umn series {Xi1, . . . , Xip} under Design (C) nonstationary. Sim-
ilar design was considered in Cai, Liu, and Xia (2013).

When evaluating the thresholding estimator, the normally dis-
tributed data were generated for the covariance structure (A) in
(7.2) with θ = 0.7−1 and 0.9−1, as well as a block diagonal
covariance (Design (D)):

�p×p = diag(�(1)
p/2×p/2, �

(2)
p/2×p/2) where �(1) and �(1) follow

structure (A) with θ = 0.3−1 and 0.9−1, respectively. (7.4)

To mimic the “large p, small n” paradigm, we chose n =
40, 60 and p = 40, 200, 400, and 1000, respectively. We con-
sidered the more conservative bandwidth estimator in (4.3) that
has a wider span of search region. For the banding estimation,
comparison has been made with the cross-validation approach
of Bickel and Levina (2008a,b). Similar to (6.5), the empirically
estimated Frobenius risk with respect to the bandwidth k is

R̂(k) = 1

N

N∑
v=1

||Bk(�̂v
1 ) − �̂v

2 ||2F (7.5)

and the bandwidth estimator is k̂B L = arg min
k

R̂(k). According

to Bickel and Levina (2008b), we chose n1 = n(1 − 1/ log n)
and the number of random splits N = 50. We choose B = 2.5
in (6.6), (6.7), and (6.8) in the algorithm for the threshold levels.
All the simulation results reported in this section were based on
500 replications.

Tables 1, 2, and 3 report averages and standard deviations
of the proposed bandwidth estimators for both the banding and
the tapering estimation, and those of Bickel and Levina (2008a)
(BL)’s CV bandwidth estimator, under both the Gaussian and
the standardized t5 innovations with the covariances (A), (B),
and (C) in (7.2) and (7.3).

It is observed from Tables 1 and 2 that the proposed bandwidth
had smaller bias and standard deviation than those of the Bickel
and Levina’s CV estimators for almost all the cases in the simula-
tions. The bias and standard deviation of the proposed bandwidth
selector were consistently less than 0.5 for larger p, which may
be viewed as confirmatory to the finding in Theorem 2 that the
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Figure 2. Empirical bias and standard deviation of the proposed method (4.3), the fixed and change-point estimator of Qiu and Chen (2012)
for covariance (A) with θ = 0.7−1, 0.9−1, and n = 60 under standard normal innovation.
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Figure 3. Differences in the absolute bias and standard deviation of SURE and the proposed bandwidth estimator (SURE minus proposed)
for the tapering estimation under covariance (A) with θ = 0.7−1 and N (0, 1) (� = 0), standardized Gamma innovation with � = 6, 12, 20, 60.
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Table 4. Empirical average and standard deviation in parentheses of the proposed threshold estimators and Bickel and Levina’s (BL) under the
covariance Design (A) in (7.2) and (D) in (7.4) for the normal distributed data

n p True BL 1st iteration 2nd iteration 5th iteration

Covariance (A) with θ = 0.7−1

40 40 0.64 0.92(0.177) 0.76(0.104) 0.70(0.090) 0.66(0.095)
40 200 0.86 1.28(0.078) 1.05(0.053) 0.98(0.049) 0.95(0.046)
40 400 0.89 1.38(0.061) 1.13(0.042) 1.06(0.039) 1.03(0.038)
40 1000 0.92 1.48(0.047) 1.21(0.033) 1.15(0.031) 1.13(0.030)
60 40 0.64 0.85(0.171) 0.72(0.120) 0.67(0.116) 0.64(0.121)
60 200 0.85 1.20(0.063) 1.00(0.041) 0.94(0.037) 0.92(0.036)
60 400 0.88 1.25(0.042) 1.05(0.031) 1.00(0.029) 0.98(0.028)
60 1000 0.91 1.31(0.031) 1.11(0.021) 1.06(0.019) 1.04(0.019)

Covariance (A) with θ = 0.9−1

40 40 0 0.09(0.133) 0.06(0.099) 0.04(0.082) 0.02(0.063)
40 200 0.56 0.79(0.098) 0.65(0.070) 0.60(0.064) 0.57(0.064)
40 400 0.65 0.95(0.074) 0.78(0.052) 0.72(0.046) 0.70(0.044)
40 1000 0.72 1.09(0.052) 0.90(0.040) 0.84(0.037) 0.82(0.036)
60 40 0 0.08(0.153) 0.05(0.113) 0.04(0.098) 0.03(0.084)
60 200 0.56 0.76(0.075) 0.64(0.053) 0.60(0.051) 0.58(0.052)
60 400 0.65 0.89(0.059) 0.74(0.040) 0.70(0.035) 0.68(0.034)
60 1000 0.72 1.00(0.037) 0.84(0.028) 0.80(0.026) 0.78(0.025)

Covariance (D)
40 40 0.58 0.76(0.241) 0.62(0.164) 0.58(0.144) 0.54(0.149)
40 200 0.73 1.07(0.082) 0.87(0.054) 0.81(0.050) 0.78(0.051)
40 400 0.78 1.17(0.063) 0.95(0.041) 0.90(0.038) 0.87(0.037)
40 1000 0.83 1.28(0.042) 1.05(0.030) 0.99(0.028) 0.97(0.027)
60 40 0.61 0.79(0.196) 0.67(0.125) 0.63(0.111) 0.61(0.108)
60 200 0.73 1.00(0.079) 0.84(0.049) 0.79(0.046) 0.77(0.047)
60 400 0.78 1.08(0.052) 0.91(0.034) 0.87(0.032) 0.85(0.031)
60 1000 0.82 1.17(0.034) 0.98(0.025) 0.94(0.023) 0.92(0.023)

underlying bandwidths are within O1 = [k̂B − 1, k̂B + 1] with
overwhelming probability. It is also observed that as p was in-
creased, both the bias and the standard deviation of the proposed
bandwidth estimator were reduced. This was not necessarily the
case for the CV bandwidth selector.

Comparing the results of the bandwidths for the banding and
the tapering estimators in Tables 1 and 3 under Design (A), we
found that the underlying kB and kT were more responsive to
the increase of the sample size n than to the increase of the di-
mension p. This may be understood by the fact that the penalty
term (np)−1 ∑

|l1−l2|≤k

σl1l1σl2l2 in the objective function decreases

as n is increased. Although there is a division of p in the penalty
term, it is absorbed as part of the averaging process. As a result,
the underlying bandwidths were not sensitive to p upon given a
particular covariance design. Under both the standardized nor-
mal and t5 innovations, it was found that kB = k̃B and kT = k̃T

for all the (p, n) combinations under the covariance Designs
(A)–(C). This was not necessarily the case for more skewed
data, for instance the standardized Gamma(0.1, 1) innovation
(Figure 3).

Table 4 reports the average and the standard deviations of
the selected threshold levels by the proposed iterative approach
and Bickel and Levina’s (2008b) CV method. It shows that
the selected threshold level from the first iteration was already
better than the CV method for having smaller bias and be-
ing less variable. The second iteration improved those of the
first significantly, and the improvement continued as the iter-

ation went. A convergence was largely established within five
iterations.

In addition to evaluate the performance of the bandwidth
estimation, we also computed the estimation loss for � with the
estimated bandwidths, and Bickel and Levina’s (BL) as well as
Cai and Yuan’s (2012) (CY) adaptive blocking estimation. Let
�̂k̂B

and �̂k̂T
be the banding and the tapering estimators with the

proposed bandwidth selection, respectively; and �̂k̂BL
and �̂CY

be the banding estimator with BL’s bandwidth selection and Cai
and Yuan’s adaptive blocking estimation, respectively. For each
of the covariance estimators, say �̂, we gathered the spectral
loss ||�̂ − �||(2,2) and the Frobenius loss ||�̂ − �||F . Figure 1
displays the boxplots of the estimation losses under Design (A)
with θ = 0.7−1, Design (B) with ξ = 0.5 and β = 1.5 and the
Gaussian innovations.

We observe from Figure 1 the estimation losses of �̂k̂BL
en-

countered large variance under both the spectral and Frobenius
norms, which was likely caused by the large variation of the BL’s
bandwidth estimator shown in Tables 1 and 2. The estimation
errors of �̂CY were quite large in terms of the Frobenius norm.
While its relative performance was improved under the spec-
tral norm, the errors were still larger than those of the banding
and tapering estimators with the proposed bandwidth selection
methods under the covariance Designs (A) and (B). We observe
a significant advantage of the covariance estimation with the
proposed bandwidth selection method. In particular, the losses
of the banding and the tapering estimators with the proposed
bandwidths were substantially less than those of �̂CY and �̂k̂BL

.
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Figure 4. Estimated h(k) and estimated Frobenius loss of the banding and the tapering estimators for the metal and the rock groups of the
sonar spectrum data.

Although �̂k̂BL
’s median loss was less than that of �̂CY in most

cases, it was much more variable. In contrast, the banding and
the tapering estimation with the proposed bandwidths had the
smallest medians and variation. We also observe that the es-
timation loss of the tapering estimator was smaller than that
of the banding estimator under Design (A). This is due to that
the h(k) function decays gradually as the bandwidth k was in-
creased. Therefore, the tapering estimator fits these covariance
structures better than the banding estimator. However, under
Design (B), the advantage of the tapering estimator over the
banding estimator was much reduced.

We also compared the proposed method (4.3) with the fixed
and the change-point methods of Qiu and Chen (2012) designed
for banded covariances. We considered k̂0.5,0.06 for the fixed
estimator, and the change-point estimator was applied on band-
widths whose p-values for the banded test were larger than
10−10. Figure 2 reports the bias and standard deviation of these
three methods for covariance design (A) with the Gaussian dis-
tributed innovation. The covariance design prescribes an ex-
ponentially decaying off-diagonal with the speed of the decay
controlled by θ . And the covariance under this regime is not
banded but bandable. We observe that the performance of the
proposed estimators was much more accurate than those of Qiu
and Chen (2012), with much smaller bias and standard devia-
tion. For the covariance design with θ = 0.7−1, both the fixed
and the change-point estimators overestimated the underlying
bandwidth. For the covariance design with θ = 0.9−1, we found
dramatic under-estimation and overestimation for the fixed and

the change-point estimators, respectively. The inferior perfor-
mance of Qiu and Chen’s methods confirms that they are not
suitable for “bandable” covariances.

The relative performance of the proposed bandwidth selec-
tion for the tapering estimator to that of the SURE of Yi and
Zou (2013) is displayed in Figure 3. The figure plots the differ-
ences in the absolute bias and the standard deviation between
the SURE and the proposed bandwidth selection under covari-
ance Design (A) with θ = 0.7−1. The comparison was made
under the Gaussian innovation (� = 0), and the standardized
Gamma innovations with � = 6, 12, 20, and 60. We recall that
� measures the excessive kurtosis over that of the Gaussian.
We observed that the performance of SURE and the proposed
were largely comparable for smaller � and larger n (n = 60).
As � got larger so that the data deviate more from the Gaus-
sian, the performance of SURE was adversely affected. The
standard deviation and the bias of the proposed bandwidth es-
timates were largely stable with respect to the changing �. It
is noted that SURE is proposed under Gaussianity whereas the
proposed bandwidth estimation is largely nonparametric. This
was the reason that the proposed method outperformed SURE
for the Gamma distributed innovations.

8. EMPIRICAL STUDY

In this section, we reported an empirical study on a sonar
spectrum dataset by conducting the banding and tapering covari-
ance estimation with the proposed bandwidth selection methods.
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Gorman and Sejnowski (1988a, 1988b) and Yi and Zou (2013)
had analyzed the same data, which are publicly available at the
University of California Irvine Machine Learning Repository.
The dataset collects the so-called sonar returns which are the
amplitudes of bouncing signals off an object, essentially the re-
turn signal strength over time. The sonar returns were collected
from bouncing signals off a metal cylinder and a cylindrically
shaped rock, respectively, positioned on a sandy ocean floor.
The dataset contains 208 returns, 111 of them from the metal
cylinder and 97 from the rock. A data preprocessing based on
the Fourier transform was applied to obtain the spectral enve-
lope for each sonar return, and each spectral envelope composed
of 60 numerical readings in the range 0.0 to 1.0, with each read-
ing representing the energy within a particular frequency band.
Hence, the data dimension p = 60, and there were two samples
of sizes 111 and 97, respectively.

Gorman and Sejnowski (1988) analyzed the dataset by the
neural network, aiming to classify sonar targets to two groups.
Yi and Zou (2013) found that there was a quite obvious decay
among entries of the sample covariance along the off-diagonals.
They estimated the covariance matrices for the metal and the
rock groups by their SURE-tuned tapering estimation method.
Their analysis suggested the effective bandwidth of the tapering
estimator to be 34 for the rock group.

We consider estimating the covariance matrices by the band-
ing and tapering estimators with the proposed bandwidth se-
lection. The estimated h(k) for the rock and metal groups are
displayed in the upper panel of Figure 4, from which we see that
h(k) decays rapidly as the bandwidth k increases, indicating
potential bandable structure of the covariance. The estimated
Frobenius loss M̂n(k) and N̂n(k) for both groups are displayed
in the two lower panels of Figure 4 for both the banding and
tapering estimators, respectively. These graphs showed that the
bandwidths which minimize the Frobenius losses of the band-
ing estimation were 26 and 37 for the rock group and metal
group, respectively. These were quite different from the esti-
mates of 35 and 44 for the two groups prescribed by the CV
method of Bickel and Levina. For the tapering estimation, the
proposed approach selected bandwidths of 17 and 25 for the two
groups, and hence the effective bandwidths were 34 and 50 for
the two groups, respectively. This respected the ordering that kB

is between kT and 2kT . Although the SURE method produced
similar bandwidth estimates of 16 and 25 for the two groups,
the CV method for the tapering estimation gave bandwidths 28
and 26, respectively. These again were sharply different from
the bandwidth estimates using the proposed method.

9. DISCUSSION

Cai and Yuan (2012) proposed an adaptive covariance esti-
mator through a block thresholding approach for the normally
distributed data with the covariance matrix class U1(α,C). They
showed that such adaptive estimator can achieve the minimax
convergence rate under the spectral norm. The approach of
Cai and Yuan (2012) is “data-driven” up to the initial block
size k0 and a thresholding parameter λ, which were set to be

log p� and 6, respectively. The initial block size k0 functions
similarly as the bandwidth in the banding and tapering estima-
tion. While fixing the initial block size k0 attains simplicity, it

may be less responsive to the different underlying covariance
structures.

The block thresholding estimator can attain the minimax rate
of convergence, so can the tapering estimator of Cai, Zhang,
and Zhou (2010). It is important and assuring to have minimax
properties. However, the minimax rate tends to be less sen-
sitive when the matrix class under consideration is large, for
instance the U1(α,C) class. As shown in Section 3, the rates of
the underlying bandwidth kB , which minimizes the Frobenius
risk for the banding estimation, are quite responsive to the dif-
ferent forms of sparsity of �. Specifically, the exponential and
polynomial decays lead to different rates for kB . This respon-
sive feature can produce less estimation error. Our simulation
study showed that the banding and the tapering estimators with
the proposed bandwidths outperformed the block thresholding
estimator consistently under the Frobenius norm for all three
covariance designs used in the simulation, which was also the
case under the spectral norm for the covariance designs (A) and
(B). For the third design of covariance (Design (C)), the per-
formance of the CY’s estimator was comparable to those of the
banding and tapering estimators.

It can be shown that the banding estimation can also reach the
minimax convergence rate under the Frobenius norm at kB , the
underlying bandwidth that minimizes the Frobenius risk. Under
the matrix class considered in Theorem 1, the difference between
ObjB(k̂B) and ObjB(kB) is negligible comparing to ObjB(kB), as
revealed by Corollary 1 in the online supplementary material.
This leads to the belief that the banding estimation with the es-
timated bandwidth k̂B should also attain the minimax rate under
the Frobenius norm for the matrix class G(ν, q0

p). Confirming
this theoretically would be an interesting future research topic,
given the limited space available for this article.

Yi and Zou (2013) considered the bandwidth selection for the
tapering estimator for Gaussian distributed data. The proposed
method is nonparametric so it is more widely applicable, which
may explains the better performance of the proposed method
for the case of the Gamma distributed innovations.

APPENDIX A

Derivation of (3.2)

Without loss of generality, we assume μ = 0. The first term
on the right-hand side of (3.1) can be decomposed as∑

|l1−l2|≤k

(σ̂l1l2 − σl1l2 )2 = A1 + A3 − 2A2, (A.1)

where A1 = 1
n2

∑
|l1−l2|≤k

∑
i,j Xil1Xil2Xjl1Xjl2 − 2

n

∑
|l1−l2|≤k∑

i Xil1Xil2σl1l2 + ∑
|l1−l2|≤k σ 2

l1l2
, A2 = ∑

|l1−l2|≤k

(
1
n

∑n
i=1

Xil1Xil2 − σl1l2

)
X̄l1X̄l2 and A3 = ∑

|l1−l2|≤k(X̄l1X̄l2 )2. For the
first term in A1, from Assumption 2, we have

E
∑

|l1−l2|≤k

∑
i,j

Xil1Xil2Xjl1Xjl2

=
∑

|l1−l2|≤k

{
∗∑
i,j

E(Xil1Xil2 )E(Xjl1Xjl2 ) +
∑

i

E(X2
il1

X2
il2

)}

=
∑

|l1−l2|≤k

{n(n + 1)σ 2
l1l2

+ �nfl1l1l2l2 + nσl1l1σl2l2}.
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Note that En−1
( ∑

i Xil1Xil2

) = σl1l2 . By combining the three
parts together,

E(A1) = n−1
∑

|l1−l2|≤k

(
σ 2

l1l2
+ σl1l1σl2l2 + �fl1l2

)
.

Similarly, for A2 and A3, we have that

E(A2) = n−2
∑

|l1−l2|≤k

(
σ 2

l1l2
+ σl1l1σl2l2 + �fl1l2

)
and

E(A3) = n−2
∑

|l1−l2|≤k

(
2σ 2

l1l2
+ σl1l1σl2l2 + �n−1fl1l2

)
. (A.2)

Substituting these into (A.1), we have from (3.1) that

ÕbjB(k) = 1

np

∑
|l1−l2|≤k

(
σ 2

l1l2

+σl1l1σl2l2 + �fl1l2

) + 1

p

∑
|l1−l2|>k

σ 2
l1l2

− 1

n2p

∑
|l1−l2|≤k

{σl1l1σl2l2 + (2 − n−1)�fl1l2}

= 1

np
tr(�2) + (1 − n−1)Mn(k)

+ �

np
(1 − n−1)2

∑
|l1−l2|≤k

fl1l2 , (A.3)

which leads to (3.2) with Mn(k) being defined in (3.3). �

Rate of kB Under Exponential Decay Subclass

Suppose h(q) = C(q)θ−q for θ > 1 and {C(q)}p−1
q=0 ∈

[C1, C2]. Consider two equations:

a/n = C1θ
−k and b/n = C2θ

−k

which represent interceptions of two horizontal lines at a/n and
b/n to the lower and upper bound functions of h(k), respectively.
The solutions for k are, respectively,

sa,n = (log n − log a + log C1)/ log θ

and

sb,n = (log n − log b + log C2)/ log θ.

Note that for q ≤ sa,n, a/n − h(q) ≤ a/n − C1θ
−q ≤ a/n −

C1θ
−sa,n = 0. So, we have ka,n ≥ sa,n. Similarly, for q ≥ sb,n,

b/n − h(q) ≥ b/n − C2θ
−sb,n = 0, which implies that kb,n <

sb,n. Therefore,

k̃B, kB ∼ log(n)/ log(θ )

and

(A.4)

kb,n − ka,n

ka,n

≤ sb,n − sa,n

sa,n

= log{(aC2)/(bC1)}
log n − log a + log C1

→ 0. (A.5)

Also, note that

h(k) ≤ C2θ
−k ≤ C2θ

−sa,n = aC2/(C1n) (A.6)

for any k ∈ [ka,n, kb,n]. For any constant r1 ≥ 1 and k1,n =
ka,n/r1,

∑
q>k1,n

h(q) ≤
∑

q>sa,n/r1

C2θ
−q ≤ Cθ

− log n

r1 log θ = Cn−1/r1 . (A.7)

Rate of kB Under Polynomial Decay Subclass

Suppose h(q) = C(q)q−β for β > 1 and {C(q)}p−1
q=0 ∈

[C1, C2]. Similar to the exponential decay subclass, consider
the equations: a/n = C1q

−β and b/n = C2q
−β . And, their solu-

tions are sa,n = (C1n/a)1/β and sb,n = (C2n/b)1/β , respectively.
Therefore, we have

k̃B, kB ∼ n1/β and (kb,n − ka,n)/ka,n ≤ C̃ (A.8)

for a positive constant C̃, and∑
q>k1,n

h(q) ≤
∑

q>sa,n/r1

C2q
−β ≤ C2

{
(C1n/a)1/βr−1

1

}1−β

= Cn(1−β)/β, (A.9)

for any constant r1 ≥ 1. �
To prove Theorem 1, first, we intend to calculate the vari-

ance of (p − q)ĥ(q) and ĝ(q). To this end, we introduce some
notations. For q = 0, . . . , p − 1, define

F1,q = 1

P 2
n

p−q∑
l=1

∗∑
i,j

(XilXi l+q)(XjlXj l+q),

F2,q = 1

P 3
n

p−q∑
l=1

∗∑
i,j,k

XilXk l+q(XjlXj l+q),

F3,q = G3,q = 1

P 4
n

p−q∑
l=1

∗∑
i,j,k,m

XilXj l+qXklXm l+q,

G1,q = 1

P 2
n

p−q∑
l=1

∗∑
i,j

X2
ilX

2
j l+q

and

G2,q = 1

P 3
n

p−q∑
l=1

∗∑
i,j,k

(
XilXklX

2
j l+q + Xi l+qXk l+qX

2
j l

)
.

Then, Ŵ (k) = 2p−1 ∑p−1
q=k+1(F1,q − 2F2,q + F3,q) and V̂ (k) =

p−1{G1,0 − G2,0 + G3,0 + 2
∑k

q=1(G1,q − G2,q + G3,q)}. The
following lemma presents the variances of Fi,q and Gi,q for i =
1, 2, 3, whose proof can be found in the online supplementary
material.

Lemma A.1. Under Assumptions 2, if λmax(�) ≤ C < ∞,
for any q = 0, . . . , p − 1,

(i) var(F1,q) = O{ph(q)n−1 + pn−2}, var(F2,q) = O{ph

(q)n−2 + pn−3} and var(F3,q) = var(G3,q) = O(pn−4);
(ii) var(G1,q) = O(pn−1) and var(G2,q) = O(pn−2).

Proof of Theorem 1

Let S0 = [k1,n, k2,n]. For any δ > 0 and every n, define
S1 = {k : |k − k̃B | ≥ δk̃B} ∩ S0. Then, if k̂B ∈ S1,n, we have
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supk∈S1
{M̂n(k̃B) − M̂n(k)} ≥ 0. It follows that

P (|k̂B − k̃B | ≥ δk̃B) = P (k̂B ∈ S1)

≤ P [sup
k∈S1

{M̂n(k̃B) − M̂n(k)} ≥ 0].

For the term on the right side of the inequality, noting by
(3.6), we have infk∈S1{Mn(k) − Mn(k̃B)} ≥ Ck̃Bn−1. Hence,

P [sup
k∈S1

{M̂n(k̃B) − M̂n(k)} ≥ 0]

≤ P [sup
k∈S1

{M̂n(k̃B) − M̂n(k) + Mn(k) − Mn(k̃B)}

≥ Ck̃Bn−1]. (A.10)

Note that E{M̂n(k̃B) − M̂n(k)} = Mn(k̃B) − Mn(k) and

M̂n(k̃B) − M̂n(k) = 2

np

3∑
i=1

k̃B∑
q=k+1

Gi,q

− 2

p

3∑
i=1

k̃B∑
q=k+1

Fi,q for k < k̃B , and

M̂n(k̃B) − M̂n(k) = 2

p

3∑
i=1

k∑
q=k̃B+1

Fi,q

− 2

np

3∑
i=1

k∑
q=k̃B+1

Gi,q for k > k̃B .

By Lemma A1, it follows that

var{M̂n(k̃B) − M̂n(k)} ≤ C|k − k̃B |∑
q∈[k̃B ,k]

{
(pn)−1h(q) + p−1n−2

}
= C{|k − k̃B |(pn)−1o(1) + (k − k̃B)2p−1n−2}.

Therefore, by Chebyshev’s inequality, the probability on the
right side of (A.10) can be bounded by a constant times∑

k∈S1

(pn)−1{|k − k̃B |o(1) + (k − k̃B)2n−1}
k̃2
Bn−2

≤ C
∑
k∈S1

{n(pk̃B)−1o(1) + p−1},

where the inequality above comes from the condition (kb,n −
ka,n)/ka,n ≤ C. Note that |S1| ≤ C(kb,n − ka,n) for a positive
constant C. It follows that

P [sup
k∈S1

{M̂n(k̃B) − M̂n(k)} ≥ 0]

≤ C(kb,n − ka,n){n(pk̃B)−1o(1) + p−1}
= O{np−1o(1) + kb,np

−1}.
Since kb,n = o(n), the last term in the inequality above is the
small order term of np−1. Noting that n = O(p) by Assumption
1, we have P (|k̂B − k̃B | ≥ δk̃B) = o(n/p) → 0 for any δ > 0,
which leads to the conclusion that k̂B/k̃B → 1, as n → ∞. �

SUPPLEMENTARY MATERIALS

The online supplementary materials contain additional
proofs.

[Received October 2013. Revised June 2014.]
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