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The real-world performance of vaccines against COVID-19 infections is
critically important to counter the pandemics. We propose a varying coeffi-
cient stochastic epidemic model to estimate the vaccine protection rates based
on the publicly available epidemiological and vaccination data. To tackle the
challenges posed by the unobserved state variables, we develop a multi-step
decentralized estimation procedure that uses different data segments to esti-
mate different parameters. A B-spline structure is used to approximate the
underlying infection rates and to facilitate model simulation in obtaining an
objective function between the imputed and the simulation-based estimates of
the latent state variables, leading to simulation-based estimation of the diag-
nosis rate using data in the pre-vaccine period and the vaccine effect param-
eters using data in the post-vaccine periods. And the time-varying infection,
recovery and death rates are estimated by kernel regressions. We apply the
proposed method to analyze the data in ten countries which collectively used
8 vaccines. The analysis reveals that the average protection rate of the full
vaccination was at least 22% higher than that of the partial vaccination and
was largely above the WHO recognized level of 50% before November 20,
2021, including the Delta variant dominated period. The protection rates for
the booster vaccine in the Omicron period were also provided.

1. Introduction. The COVID-19 pandemic has been raging around the globe for more
than two years, which has caused waves of infections and deaths among countries. The pan-
demic has prompted the development of vaccines which have been clinically administrated
in various countries since early 2021. Ten COVID-19 vaccines had been approved for public
use by the World Health Organization (WHO) as of January 2022. Vaccine makers have pro-
vided clinical trial results on the efficacy of their products. The vaccine efficacy against the
original SARS-Cov-2 strain from recent studies is reported in Table S1, which ranged from
50.7% to 95% for the two-dose vaccination. However, SARS-CoV-2 has undergone progres-
sive changes. The Delta variant has caused global pandemics with a high transmission rate
(Planas et al., 2021), resulting in considerable socioeconomic burden and pressure on hospital
systems (Liu et al., 2021).

There is a great need to evaluate the vaccine effectiveness in the real-world situation. Clin-
ical trials used to evaluate the vaccine efficacy exclude certain part of the population and
are difficult to control all confounding factors that may cause infections in the population.
The retrospective studies, such as Li et al. (2021), used the proportion of the vaccine break-
through cases in all infected cases in specific institutions, which typically had a small sample
size relative to the daily infections in a country. Moreover, most countries do not collect
vaccine breakthrough statistics, which brings great challenges for evaluating vaccine effects
in real-world situations. In addition, many studies have only provided data on effectiveness
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against symptomatic cases as including asymptomatic ones is difficult. Hence, the real-world
performance against any infection is an important issue. In this study, we use the real-world
vaccine protection rate (VPR), defined as one minus the percentage reduction in the infection
rate of the vaccinated relative to the population without vaccine protection (unvaccinated and
vaccine-expired) of a country, to measure the combined effectiveness of vaccines adminis-
trated in a country against SARS-Cov-2 infection at the population level.

Compartmental models, like SIR (Kermack and McKendrick, 1927) and SEIR (Anderson
and May, 1982) models, are widely used for modeling the transmission of infectious diseases,
which divide a population into compartments and specify the transition rates among com-
partments by ordinary differential equations (ODEs). Stochastic epidemic models (SEMs)
extended from the SEIR model had been proposed to study the spread of COVID-19 before
vaccines were available (Hao et al., 2020; Tian et al., 2021; Yan et al., 2021). As asymp-
tomatic and pre-symptomatic infections in the COVID-19 pandemic are not observable, the
likelihood functions based on the observed data are rather complex due to having to integrate
out unobserved state variables. Bayesian methods which target the joint posterior distribu-
tion of the unobserved data and the model parameters use the Markov chain Monte Carlo
(Auranen et al., 2000) or the sequential Monte Carlo (Dukic, Lopes and Polson, 2012) for
parameter estimation. Quick, Dey and Lin (2021) built a multilevel regression model on the
COVID-19 daily confirmed infection counts, polymerase chain reaction testing and serolog-
ical survey data, and developed an EM algorithm to estimate the model parameters.

There are recent studies (Dashtbali and Mirzaie, 2021; Giordano et al., 2021) in evaluating
COVID-19 vaccination strategies using a deterministic compartment model that assumes a
portion of the vaccinated can achieve permanent and full immunity, which is quite restric-
tive. Moreover, deterministic models are inadequate to facilitate statistical inference on the
characteristics of epidemics. Incorporating stochasticity into epidemic models is needed for
real-world evaluation due to the randomness of the state variables. There has been no study
using the publicly available data to estimate the real-world COVID-19 VPR without the re-
strictive permanent and full immunity assumption and incorporating the stochastic natures of
the epidemics and the unobservable asymptomatic and pre-symptomatic cases.

We propose a new SEM for evaluating COVID-19 VPR based on publicly available epi-
demiological and vaccination data, which allows breakthroughs in fully and partially immu-
nized people, and infection before clinical diagnosis and being asymptomatic. Its advantages
over the traditional cohort or case-control studies are in its much-reduced data collection cost
and timely assessment on the real-world performance of vaccines.

The unavailability of data on infections before clinical confirmation and vaccine break-
through brings several challenges to estimating real-world vaccine effects. First, unobserv-
able compartments in the model and the complexity of the model make the maximum likeli-
hood estimation and the EM algorithm, which involves integrating out the latent variables in
the conditional distribution, difficult to be implemented. Second, the approach of the leave-
one-out cross-validation criteria with a kernel smoothing procedure for estimating parameters
of the varying coefficient SEM built for modeling the pre-vaccine COVID epidemic in Yan
et al. (2021) is no longer applicable with the vaccine-related compartments, since the model is
more complex with more unobservable compartments. Third, although the conditional means
of our model can be specified via the ODEs, the estimation methods used for the determin-
istic ODEs from partially observed data or data with additive measurement errors are not
applicable for the proposed SEM with heterogeneity due to the conditional Poisson speci-
fication. The methods include the simulation-based estimation approach such as the single
(Hicks and Ray, 1971) and multiple (Baake et al., 1992) shooting methods which minimize
certain distance measures between the observed state variables and the simulated trajecto-
ries of the variables via the ODEs given the parameter values. The non-simulation-based
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estimation approaches for differential-equation-based models involved the generalized pro-
filing estimation via B-splines expansions or the nonparametric regression estimate of model
coefficients (Ramsay et al., 2007; Liang and Wu, 2008).

To tackle these challenges, this study proposes a decentralized estimation approach that
utilizes different periods of the data series for estimating different parameters, taking ad-
vantage of long observations of the COVID-19 epidemics. Unobservable compartments are
imputed by data on observed compartments based on the proposed stochastic model. A major
part of the estimation is attained by minimizing certain contrast functions between the im-
puted and the simulation-based estimates for the infected to estimate (i) the diagnosis rate us-
ing the pre-vaccine period data, and (ii) the vaccine effect parameters using the post-vaccine
period data. The final time-varying infection rate is estimated by the kernel smoothing method
based on the model-implied imputation equations.

We apply the proposed model and estimation approach to analyze the data from ten coun-
tries to estimate the real-world VPRs and other key parameters. It is found that the VPRs
of partial (one dose) vaccination ranged from 48% to 64% and 17.5% to 48% in the pre-
Delta and the Delta-dominated periods, respectively. The VPRs of the full (usually two-dose)
vaccination ranged from 68% to 95% in the pre-Delta era, which were reduced to 45% to
74% when the Delta variant dominated. The average VPRs from the full vaccination were at
least 22% more than those of the partial vaccination, suggesting significant extra protection
offered by the full vaccination. Furthermore, VPRs of full vaccination for the 10 countries
up to November 20, 2021 (before the Omicron era) were largely above the WHO recognized
50% level with all 8 brands of the vaccines, including inactivated vaccines. Our results of the
mixed effectiveness of vaccines being administrated simultaneously in a country were consis-
tent with those of published studies via clinical trials and the retrospective studies reviewed
in the supplementary material (SM).

The paper is organized as follows. Section 2 introduces the data and the periods with
respect to vaccination and the pandemic. Section 3 presents the proposed SEM with vacci-
nation compartments. The multi-step decentralized estimation procedure is given in Section
4. Section 5 reports simulation results to evaluate the proposed method. Sections 6, 7 and
8 provide the empirical analysis on the estimated vaccine effects in different periods of the
pandemic, the sensitivity analysis of the proposed method, and the scenario analysis results
for the no-vaccine, partial-vaccination and first-dose-priority scenarios, respectively. Section
9 extends the proposed approach to estimate the VPRs of booster vaccine and VPRs in the
Omicron period. Section 10 offers a general discussion.

2. Data. Our analysis used the publicly available epidemiological data from February
23, 2020 to November 20, 2021 of 10 countries listed in Table S3 of the SM. The first date
marked the start of the local transmission in these countries, while the second date represented
the end of the pre-Omicron era as Omicron was first reported on November 24, 2021. We also
extended the analysis to March 15, 2022 to cover the Omicron period. The daily epidemio-
logical statistics were obtained from Johns Hopkins University Center for Systems Science
and Engineering (JHU CSSE) COVID-19 Dashboard (Dong, Du and Gardner, 2020), and
the information on the vaccine types and the cumulative numbers of people having received
the partial and full vaccination was obtained from the official statistics of the countries. In
this paper, the partial (full) vaccination means having not completed (having completed) the
primary series of vaccination according to the definition of primary series and the prescribed
number of vaccine doses of each vaccine product as specified in CDC (2022).

Some countries (Canada, Italy, Portugal, the UK, the US) under-reported their daily re-
covery cases almost from the beginning of the pandemics (Yan et al., 2021) as reflected in
Figure S2 of the SM. Moreover, recoveries in all the 10 countries have not been reported
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Fig 1: Compartments and state variables with a dynamic flow chart of the proposed vSVIADR
model. The observable (unobservable) compartments are marked by solid (dashed) boxes.
The red dashed infected box is a mix of pre-symptomatic and asymptomatic infections.

since August, 2021. Thus, we used 14 days as the average time of recovery, as suggested by
WHO and supported clinically by Guan et al. (2020), to impute the recovered cases for these
countries. To reduce potential measurement errors, the daily data were smoothed using the
procedure outlined in the SM with a bandwidth of 15 days.

For each country, we studied four non-overlapping periods: the pre-vaccine period from
the start of the epidemic till the start of vaccination, the pre-Delta period till the Delta variant
was first detected in the country, the intervening period till the Delta variant became pre-
dominant and the Delta-dominated period when the majority of the cases were caused by
the Delta variant. India did not have the pre-Delta period as its first Delta case was reported
before vaccination. The dates of the periods in the countries are provided in the SM.

3. Epidemiological Model. We propose a new SEM called varying coefficient susceptible-
vaccinated-infected-diagnosed-removed (vSVIADR) model with ten compartments for a
well-mixed population of size M . The proposed model with its compartments and key pa-
rameters is illustrated in Figure 1. It shows that in addition to the latent asymptomatic and
pre-symptomatic compartments before diagnosis considered in Yan et al. (2021), we add
the partially and fully vaccine immunized compartments to model the transmission after
vaccination. This allows to estimate the VPR in real-world situations using daily statistics
of epidemics and vaccination. As the vaccine supply and distribution vary from country to
country, such an estimation would better reflect the actual vaccine effect in a given population
than the estimates from the experimental studies using clinical trial data (Voysey et al., 2021;
Polack et al., 2020) or the retrospective studies (Sheikh et al., 2021; Li et al., 2021).

Let V0(t), V1(t), V2(t), Ve(t) be counts at day t of four uninfected sub-populations hav-
ing received no vaccine, with partial, full and expired vaccine immunity; and Ia(t) and
Ip(t) be the counts of asymptomatic and pre-symptomatic infections, respectively, where
the asymptomatic cases are never diagnosed, and the pre-symptomatic cases will be tested
and confirmed in a future date, but not yet diagnosed at time t. The latter two com-
partments start two epidemiological pathways with that from asymptomatic Ia(t) leading
to the self recovered Ra(t), and the symptomatic pathway from Ip(t) to the diagnosed
D(t), then to the recovered Rr(t) and the dead Rd(t). We combine V0 and Ve into one
state S, and let S(t) = V0(t) + Ve(t) be the counts of uninfected people without vac-
cine immunity whether due to receiving no vaccine or losing vaccine immunity at day t,
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Ft = σ((S(s), V1(s), V2(s), Ia(s), Ip(s),D(s),Ra(s),Rr(s),Rd(s)), s≤ t) be the σ-algebra
generated by the counts of all compartments up to time t and ∆A(t) = A(t+ 1)−A(t) be
the daily increment operator of a state variable A on day t.

Let H(t,βt) = {βIa
t Ia(t) + β

Ip
t Ip(t) + βD

t D(t)}/M be the total infection loading at t,
where βt = (βIa

t , β
Ip
t , β

D
t ). The vSVIADR model prescribes the conditional mean model

E{∆S(t)|Ft}=−H(t,βt)S(t)− ϕ1,tV0(t) + µ1V1(t) + µ2V2(t),

E{∆V1(t)|Ft}= ϕ1,tV0(t)− µ1V1(t)−φκH(t,βt)V1(t)− ϕ2,tV1(t),

E{∆V2(t)|Ft}= ϕ2,tV1(t)− µ2V2(t)− κH(t,βt)V2(t),

E{∆Ia(t)|Ft}= (1− θ)H(t,βt){S(t) +φκV1(t) + κV2(t)} − γr,tIa(t),

E{∆Ip(t)|Ft}= θH(t,βt){S(t) +φκV1(t) + κV2(t)} − αIp(t),

E{∆D(t)|Ft}= αIp(t)− γtD(t), E{∆Ra(t)|Ft}= γr,tIa(t),

E{∆Rr(t)|Ft}= γr,tD(t) and E{∆Rd(t)|Ft}= γd,tD(t).

(1)

This form of the model connects well with the existing compartmental models defined via
ODEs dating back to the SIR and SEIR models. However, as some compartments are latent,
Model (1) is not enough to determine the joint distribution of the state variables.

Let ∆S−
I (t), ∆V

−
1,I(t) and ∆V −

2,I(t) be the numbers of daily infected people from the
three compartments S, V1 and V2 on day t, respectively; ∆V −

1,L(t) and ∆V −
2,L(t) be the daily

increments of people losing immunity from V1(t) and V2(t), respectively; and ∆I+a (t) be
the number of daily new asymptomatic cases on day t, where + (−) means inflow (outflow)
from a compartment. Furthermore, let N(t) = D(t) + Rd(t) + Rr(t) be the accumulative
confirmed cases, G1(t) and G2(t) be the accumulative numbers of people who have received
at least one dose of vaccine and who are fully vaccinated, respectively. The following is the
specification of the vSVIADR model via mutually independent Poisson distributions:

∆S−
I (t)|Ft ∼ Poi{H(t,βt)S(t)},

∆V −
1,I(t)|Ft ∼ Poi{φκH(t,βt)V1(t)}, ∆V −

2,I(t)|Ft ∼ Poi{κH(t,βt)V2(t)},

∆I+a (t)|Ft ∼ Binomial(∆S−
I (t) +∆V −

1,I(t) +∆V −
2,I(t),1− θ)(2)

∆G1(t)|Ft ∼ Poi{ϕ1,tV0(t)}, ∆G2(t)|Ft ∼ Poi{ϕ2,tV1(t)},

∆V −
1,L(t)|Ft ∼ Poi{µ1V1(t)}, ∆V −

2,L(t)|Ft ∼ Poi{µ2V2(t)}, ∆N(t)|Ft ∼ Poi{αIp(t)}

∆Ra(t)|Ft ∼ Poi{γr,tIa(t)}, ∆Rr(t)|Ft ∼ Poi{γr,tD(t)}, ∆Rd(t)|Ft ∼ Poi{γd,tD(t)}.

The Poisson assumptions can be relaxed into other distributions to accommodate potential
overdispersion as discussed in Section 10. Given the initial {S(1), V1(1), V2(1), Ia(1), Ip(1),
D(1), Ra(1), Rr(1), Rd(1)} and based on the (2), the state variables progress according
to (A.3) of the SM which are used to generate trajectories of the variables for parameter
estimation. The relationship among ∆Gi(t) and ∆Vi(t), i = 1,2, are explained by (A.3) in
the SM; see Section S3 of the SM for details.

The infectious states in the vSVIADR model are the asymptomatic, pre-symptomatic, and
diagnosed (Ia, Ip and D) with time-varying infection rates βIa

t , βIp
t and βD

t , respectively.
Asymptomatic and pre-symptomatic cases are not diagnosed at t, and asymptomatic cases
are never confirmed through the infection. Thus, only the diagnosed state is observable. Since
asymptomatic cases develop no symptom and diagnosed people are advised to isolate at home
or hospitalized, their risks of transmission are lower than the pre-symptomatic cases in aver-
age at the population level. Therefore, we assumes that the pre-symptomatic compartment to
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be more contagious than the other two compartments so that βIa
t = βD

t = β
Ip
t /ζ for a known

constant ζ > 1, which was set as 5 according to the choice suggested in Yan et al. (2021).
Results of a sensitivity analysis for different ζ are provided in Section 7.

Moreover, the vaccinated infected may have a lower transmission rate relative to the in-
fected without vaccine protection, which implies heterogeneous infection rates among the
non-vaccinated, partially vaccinated and fully vaccinated in each infected compartment. The
current model has not taken this potential heterogeneity into account, partially due to unavail-
able data which keep track of the vaccination status of the infected.

The vaccine effects of immunological barriers for the uninfected populations (S, V1, and
V2) are reflected by the two vaccine effect parameters φ and κ. The full vaccination is as-
sumed to reduce the infection rate by a factor κ ∈ [0,1] relative to the unvaccinated, while the
partial vaccination reduces the rate by φκ for a φ ∈ [0,1/κ]. The VPR is 1− κ and 1− φκ
for the fully and partially vaccinated under the model, respectively. If the full vaccination is
fully effective, then κ= 0, while κ= 1 for complete failure.

Temporary immunity was assumed via µ1 and µ2 as 1/µ1 and 1/µ2 specify the respective
average lengths of immunity after the partial and full vaccination. As the vaccinated people
with lost or expired immunity are unobservable, µ1 and µ2 can not be estimated from daily
epidemiological data, and their values have to be obtained from clinical studies. According to
Doria-Rose et al. (2021) and Johnson & Johnson (2021), we set µ1 = 1/60 and µ2 = 1/240. It
is noted that Dashtbali and Mirzaie (2021) and Giordano et al. (2021) assumed µ1 = µ2 = 0
(permanent immunity) and a regular flow from susceptibles with full efficacy of vaccines.
The time-varying rate ϕ1,t (ϕ2,t) of receiving the partial (full) vaccination for the susceptible
(the partially vaccinated) people S(t) (V1(t)) can be estimated by the kernel smoothing on
the daily number of unvaccinated (partially vaccinated) people receiving the partial (full)
vaccination ∆G1(t) (∆G2(t)).

Under the vSVIADR model, θ ∈ (0,1) is the daily proportion of the pre-symptomatic
cases and α is the diagnostic rate from the pre-symptomatic state Ip to the diagnosed state
D. Implied from (2), the number of newly asymptomatic cases ∆I+a (t) given the daily new
infections follows Binomial(∆S−

I (t) + ∆V −
1,I(t) + ∆V −

2,I(t),1 − θ). As the asymptomatic
and pre-symptomatic cases are latent, similar as µ1 and µ2, we determine the value of θ
based on existing studies. The meta-analysis of Buitrago-Garcia et al. (2020) found 20% (CI:
17% - 25%) of COVID-19 infections remained asymptomatic in 79 published studies, which
led our setting θ = 0.8 in the analysis.

The effective reproduction number Rt is a key indicator and quantifies the mean number
of secondary infections generated per primary infection at t. Derivation in the SM shows that

(3) Rt =

{
(1− θ)

βIa
t

γr,t
+ θ

(
β

Ip
t

α
+
βD
t

γt

)}
S(t) +φκV1(t) + κV2(t)

M

under the vSVIADR model. When Rt > 1(< 1), the epidemic is increasing (decreasing).
From (3), Rt is conventionally driven positively by the three infection rates {βIa

t , β
Ip
t , β

D
t },

and negatively by the diagnosis rate α, the removal rate γt and the VPRs represented by 1−κ
and 1−φκ. That vaccine slowing down Rt is seen by relocating φκV1(t) + κV2(t) from the
susceptible population, as more people move from the group S(t) without vaccine immunity
to the partially or fully vaccinated groups V1(t) and V2(t) with enhanced immunity.

Due to the unobservable states, identification for the stochastic vSVIADR model (2) is
challenging. We provide a justification for identifiability under a deterministic version (1)
of the vSVIADR model in Section S5 in the SM and conduct the sensitivity analyses of the
estimates with respect to the choice of θ and ζ which are discussed in Section 7.
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Fig 2: The flowchart of the multi-step decentralized estimation procedure, whose main steps
are outlined in the left panel. And the right panel provides the detailed procedure of the
simulation-based estimation method used in the second and third steps in the left panel.

4. Estimation and inference. We consider the estimation of the model parameters α,
β

Ip
t , γd,t, γr,t, φ and κ for a country, which leads to the estimation of the effective reproduc-

tion number Rt by (3) as well as the VPRs. For each country, we denote its start date of the
pandemic as t= 1, the start date of vaccination as T1, and the ending date as T . The observed
data are {D(t),Rr(t),Rd(t),G1(t),G2(t)}Tt=1.

We propose a multi-step decentralized estimation procedure as displayed by the flow chart
in Figure 2, that estimates the constant α, φ and κ by minimizing certain criterion func-
tions, and estimates the time-varying parameters by the nonparametric regression method.
The decentralization implies using different periods of data to estimate different parameters.

4.1. Estimation of removal rates γd,t and γr,t. The estimation of the two removal pa-
rameters is the most straightforward among all the parameters, as the three compartments
D(t), Rr(t) and Rd(t) involving the recovery process are observable largely because they
are located at the end of the epidemiological process. From the Poisson increments of
the daily new deaths ∆Rd(t) and daily new recoveries ∆Rr(t) specified in (2), we have
E{∆Rd(t)|D(t)}= γd,tD(t) and E{∆Rr(t)|D(t)}= γr,tD(t). The time-varying nature of
the parameters suggests the locally weighted kernel smoothing estimator of γr,t and γd,t by
regressing ∆Rr(t) and ∆Rd(t) on D(t) without intercept, respectively. Specifically, the es-
timators are in the form

γ̂d,t =

∑T−1
i=1 D(i)∆Rd(i)B((t− i)/hd)∑T−1

i=1 D(i)2B((t− i)/hd)
and

γ̂r,t =

∑T−1
i=1 D(i)∆Rr(i)B((t− i)/hr)∑T−1

i=1 D(i)2B((t− i)/hr)
,

(4)

where B(·) is a boundary kernel modified from a symmetric kernel, and hd and hr are the
temporal smoothing bandwidths, whose expression is given in the SM. The boundary kernel
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(Jones, 1993) is used to account for the boundary bias associated with the non-parametric
regression estimation near the ending time of the analysis. It is a standard method to counter
the discontinuity at a boundary in nonparametric curve estimation.

4.2. Estimation of diagnosis rate α. We consider using data in the pre-vaccine stage
S1 = {t1, . . . , t2} ∈ {1, . . . , T1} to estimate the diagnosis rate α, which avoids the interfer-
ence from estimating the vaccine effect parameters φ and κ. The challenge in estimating α
lies in the pre-symptomatic compartment Ip(t) being latent. Our strategy is to minimize a
contrast measure with respect to α and βIp

t in the form of

(5) f1(α,β
Ip
t ) =

1

|S1|
∑
t∈S1

{
Êα{Ip(t)|Ft−1}/Îαp (t)− 1

}2 for Îαp (t) =∆N(t)/α,

where Îαp (t) is an imputed value of Ip(t) using the daily increment ∆N(t) of confirmed cases
at a given α by noting E{∆N(t)|Ft} = αIp(t), and Êα{Ip(t)|Ft−1} is a simulation-based
estimate of E{Ip(t)|Ft−1} by averaging the simulated trajectories according to (2) and (A.3)
at the given α and βIp

t . The construction of Êα{Ip(t)|Ft−1} requires (i) obtaining initial val-
ues of all compartments at t1 via imputation; (ii) a preliminary estimate of the time-varying
β

Ip
t by the kernel method based on imputed variables; and (iii) a B-spline enhancement to the

preliminary estimate of βIp
t for better and more stable fitting of f1(α,β

Ip
t ). Throughout the

section, the superscript α indicates the computed quantities’ dependence on α.
The observable D(t), Rr(t) and Rd(t) can be used as the initial values. For those unob-

servable state variables, Îαp (t) can serve as a replacement for Ip(t). To impute Ia(t), since

E{∆Ip(t)|Ft}= θH(t,βt)S(t)− αIp(t) and

E{∆Ia(t)|Ft}= (1− θ)H(t,βt)S(t)− γr,tIa(t)
(6)

in the pre-vaccine period, replacing θH(t,βt)S(t) by ∆Ip(t) + αIp(t), we have ∆Ia(t) ≈
{∆Ip(t) + αIp(t)}(1− θ)/θ− γr,tIa(t). Thus, {Ia(t)} can be imputed sequentially by

(7) Îαa (t) = {∆Îαp (t− 1) + αÎαp (t− 1)}(1− θ)/θ+ (1− γ̂r,t−1)Î
α
a (t− 1)

in the pre-vaccine period, where Îαp (t) is given in (5) and γ̂r,t is the estimator attained in (4).
Furthermore, as E{∆Ra(t)|Ft}= γr,tIa(t), Ra(t) in the pre-vaccine period is imputed by

(8) R̂α
a (t) = R̂α

a (t− 1) + γ̂r,t−1Î
α
a (t− 1).

Then, S(t) can be imputed by Ŝα(t) =M − Îαa (t)− Îαp (t)−N(t)− R̂α
a (t), giving the initial

values Ĥα(t1) = {D(t1),Rr(t1),Rd(t1), Î
α
p (t1), Î

α
a (t1), R̂

α
a (t1), Ŝ

α(t1)} at t1 for given α.
To minimize the objective function f1(α,β

Ip
t ) with respective to α and the varying coeffi-

cient βIp
t in (5), we approximate βIp

t by the B-spline

(9) β̃
Ip
t (λ1) =

n1+3∑
k=0

λ1,kψk,4{(t− t1)/(t2 − t1)}

for t ∈ S1, where {ψk,4(s)}n1+3
k=0 are the order four basis functions supported on [0,1], 0 ≤

n1 < t2 − t1 − 3 is the number of equally spaced internal knots within [0,1], and λ1 =
(λ1,0, . . . , λ1,n1+3) is the coefficient vector of the splines. This makes the objective function
(5) take the form f1(α, β̃

Ip
t (λ1)), which makes the optimization seemingly parametric. A data

driven procedure is proposed in Section S6 in the SM to determine a plausible range Λα of
the parameter λ1 for minimizing f1(α, β̃

Ip
t (λ1)), where Λα is given in (A.9) and (A.10).
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Given initial values Ĥα(t1) at t1, the candidate parameters α and βIp
t (λ1) with λ1 ∈ Λα,

and the estimated removal rates γ̂d,t and γ̂r,t, we can simulate all nine states in the proposed
vSVIADR model for t ∈ S1 based on (2) and (A.3), with {V1(t), V2(t),G1(t),G2(t)}t∈S1

being set as zero for the pre-vaccine period. This leads to the estimator Êα{Ip(t)|Ft−1}
and the evaluation of f1(α, β̃

Ip
t (λ1)). Specifically, let {I(b)p (t;α,λ1, Ĥα(t1))}t∈S1

be the bth
simulated trajectory of the pre-symptomatic infections Ip(t) over S1 for b = 1, . . . ,B for a
reasonably large integer B, which was set as 300 in the empirical analysis. All B trajecto-
ries are independently generated. We use the average simulated value Ĩp(t;α,λ1, Ĥα(t1)) =∑B

b=1 I
(b)
p (t;α,λ1, Ĥα(t1))/B to estimate E{Ip(t)|Ft−1} given the candidate α and λ1.

Then, the goodness-of-fit criterion function in (5) can be formulated by profiling out λ1

at a given α as

(10) f̃1(α) = min
λ1∈Λα

1

|S1|
∑
t∈S1

{
Ĩp(t;α,λ1, Ĥα(t1))/Î

α
p (t)− 1

}2
.

The estimation of α is obtained by minimizing f̃1(α) over A so that

(11) α̂= argmin
A

f̃1(α).

Based on the clinical information (Guan et al., 2020), we chose A = [0.1,0.2] implying
the average diagnosis time is from 5 to 10 days before the start of public vaccination. By dis-
cretizing the search domain, the optimization problems (10) and (11) turn into the grid search
in the space formed by n1+5 parameters {α,λ1,0, . . . , λ1,n1+3}. Other numerical algorithms,
such as the genetic algorithm (Holland, 1992) may be applied to solve the optimization prob-
lems. We chose the grid search to ensure more accuracy. The detailed optimization procedure
is provided in Section S6 in the SM.

We chose S1 to be a 30-day period. The relatively short period permitted less number of
spline basis functions to model βIp

t in order to save computational cost. From the regression
estimation equation (A.7) in the SM, larger Ip(t) and D(t) would make the estimate of βIp

t

more stable, we intend to choose S1 around the peak tpeak,1 = argmaxt∈{1,...,T1}D(t) of D(t)
before T1. Specifically, if tpeak,1 +15< T1, we set S1 = {tpeak,1 − 15, . . . , tpeak,1 +15}, other-
wise, we set S1 = {T1−31, . . . , T1−1}. As shown in Figure S3 in the SM, the peak infection
times tpeak,1 of the 10 countries were within 55 days from T1 except India and Peru, which
were, respectively, 113 and 161 days ahead of their respective vaccine start date T1.

4.3. Estimation of vaccine effects φ and κ. We consider data in a period S2 =
{t3, . . . , t4} ⊂ {T1, . . . , T1 + l1} right after the start of vaccination to estimate the vaccine
effect parameters φ and κ in the pre-Delta period. Similar to the objective function f1(α,β

Ip
t )

for estimating α in (5), we minimize the contrast measure

(12) f2(φ,κ,β
Ip
t ) =

1

|S2|
∑
t∈S2

{
Êα̂,φ,κ{Ip(t)|Ft−1}/Î α̂p (t)− 1

}2
,

where Î α̂p (t) = ∆N(t)/α̂ is the imputed value of Ip(t) by the estimated diagnosis rate α̂
obtained in (11), and Êα̂,φ,κ{Ip(t)|Ft−1} is the simulation-based estimate of E{Ip(t)|Ft−1}
at the given φ, κ and α̂ by averaging the simulated trajectories of the proposed vSVIADR
model, in the same way as the construction of Ĩp(t;α,λ1, Ĥα(t1)) for the pre-vaccine period.

Let Ĥα̂(T1) = {D(T1),Rr(T1),Rd(T1), Î
α̂
p (T1), Î

α̂
a (T1), R̂

α̂
a (T1), Ŝ

α̂(T1), V1(T1), V2(T1)}
be the imputed state variables at time T1, where Î α̂p (T1), Î

α̂
a (T1), R̂

α̂
a (T1), Ŝ

α̂(T1) are im-
puted by (5), (7) and (8) with the estimated diagnosis rate α̂, and V1(T1) = V2(T1) = 0.
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To obtain the trajectory of Ip(t), similar as Section 4.2, we also use the B-spline model
β

Ip
t (λ2) =

∑n2+3
k=0 λ2,kψk,4{(t − T1)/l1} to approximate the infection rate β

Ip
t for t ∈

{T1, . . . , T1 + l1} right after the start of vaccination, where n2 is the number of internal
knots and λ2 = (λ2,0, . . . , λ2,n2+3) is the coefficient vector. Then, the objective function in
(12) becomes f2(φ,κ,β

Ip
t (λ2)). A data driven procedure is proposed in Section S7 in the SM

to determine a plausible range Λ2 of the parameter λ2.
Let Θ be the candidate set of the vaccine parameters (φ,κ), which is set to {(φ,κ) :

0.5≤ φ≤ 10,0.01≤ κ≤ 1,φκ≤ 1} based on the reported empirical VEs in recent studies
summarized in Tables S1 and S2 in the SM. Then, the simulation of trajectories is generated
from the proposed model. Specifically, given the initial values Ĥα̂(T1) at time T1, and the
candidate model parameters (φ,κ) ∈ Θ, βIp

t (λ2) with λ2 ∈ Λ2 together with the estimated
diagnosis rate α̂ and the estimated removal rates γ̂d,t and γ̂r,t, we simulate all nine state
variables for t ∈ {T1, . . . , T1 + l1} according to the specification in (2) and (A.3). However,
we do not generate G1(t) and G2(t) by the Poisson increments shown in (2) but directly use
their observations, since they are irrelevant to the parameters of our interests, φ, κ and βIp

t .
Let {I(b)p (t;φ,κ,λ2, α̂, Ĥα̂(T1))}t∈S2

be the bth simulated trajectory of the infected
and pre-symptomatic cases over the target interval S2 for b = 1, . . . ,B, where B was
300 in the empirical analysis, and all the trajectories are independently generated. The
average Ĩp(t;φ,κ,λ2, α̂, Ĥα̂(T1)) =

∑B
b=1 I

(b)
p (t;φ,κ,λ2, α̂, Ĥα̂(T1))/B is used estimate

E{Ip(t)|Ft−1} after the start of vaccination at the candidate parameters φ, κ and λ2. Then,
the criterion function (12) can be formulated by profiling out λ2 at the given φ and κ as

(13) f̃2(φ,κ) = min
λ2∈Λ2

1

|S2|
∑
t∈S2

{Ĩp(t;φ,κ,λ2, α̂, Ĥα̂(T1))/Î
α̂
p (t)− 1}2,

and the estimator of (φ,κ) is

(14) (φ̂, κ̂) = argmin
Θ

f̃2(φ,κ)

by conducting a grid search in the space formed by n2+6 parameters {φ,κ,λ2,0, . . . , λ2,n2+3}.
The detailed optimization procedure is provided in Section S7 in the SM.

The vaccine takes time to be effective. Usually, two weeks are required to form the protec-
tive effects against SARS-CoV-2 infections after receiving a dose. We chose a 30-day period
18 days after the start of the vaccination {T1 + 18, . . . , T1 + 48} as S2 in the estimation of
the vaccine effect. The 18 days were slightly more than the 14 days recognised by the WHO
for full vaccine effect, which was based on a slightly better performance in the simulation
studies reported in Table S5 in the SM.

The estimation of (φ,κ) in the intervening and the Delta-dominated periods uses the same
procedure as outlined above except that the starting date and the initial conditions need to be
adjusted. The lengths of the target periods and the number of B-spline knots may be different
to suit each period’s situation.

4.4. Estimation of infection rate βIp
t . After having estimated the vaccine effects φ and

κ and the diagnosis rate α, the smoothing estimator {β̂Ip,α̂
t }T1−1

t=1 evaluated at α̂ in Equation
(A.8) in the SM can be used to estimate the infection rates in the pre-vaccine period. We need
to estimate the infection rate function in the post-vaccine periods. We do not use the spline
estimate for βIp

t used in Sections 4.2 and 4.3, since after obtaining α̂, φ̂ and κ̂, a more tangible
estimator based on the kernel regression estimator similar to (A.8) can be formulated in the
post-vaccine era. However, we need to update the imputation by incorporating the vaccine
compartments V1(t) and V2(t) to suit the post-vaccine situation as shown below.
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From the conditional mean of ∆Ip(t) in (1), we have the approximation ∆Ip(t)+αIp(t)≈
θH(t,βt){S(t) + φκV1(t) + κV2(t)}. Therefore, the conditional-mean-based imputation of
Ip(t), Ia(t) and Ra(t) via (5), (7) and (8) would remain the same, which is free of V1(t),
V2(t), φ and κ regardless being before or after vaccination. Let Î α̂p (t), Î

α̂
a (t) and R̂α̂

a (t) be
such imputed values for t > T1 with the estimated diagnosis rate α̂. To impute V1(t) and
V2(t), note that {∆Ip(t)+αIp(t)}/[θ{S(t)+φκV1(t)+κV2(t)}] can serve as a substitution
for the total infection loading H(t,βt). From Equation (A.3), we can impute V1(t) and V2(t)
for t > T1 by

V̂ α̂
1 (t+ 1) = (1− µ1)V̂

α̂
1 (t) +∆G1(t)−∆G2(t)−

{Î α̂p (t+ 1)− (1− α̂)Î α̂p (t)}φ̂κ̂V̂ α̂
1 (t)

θ(Ŝα̂(t) + φ̂κ̂V̂ α̂
1 (t) + κ̂V̂ α̂

2 (t))
,

V̂ α̂
2 (t+ 1) = (1− µ2)V̂

α̂
2 (t) +∆G2(t)−

{Î α̂p (t+ 1)− (1− α̂)Î α̂p (t)}κ̂V̂ α̂
2 (t)

θ(Ŝα̂(t) + φ̂κ̂V̂ α̂
1 (t) + κ̂V̂ α̂

2 (t))
,

with the initial values V1(T1) = V2(T1) = 0. Then, Ŝα̂(t) =M − V̂ α̂
1 (t)− V̂ α̂

2 (t)− Îαa (t)−
Îαp (t)−N(t)− R̂α

a (t) is the imputed value of S(t).
With the updated definitions of Y (t) = {Î α̂p (t+1)+(α̂−1)Î α̂p (t)}/θ andX(t) =

[
Î α̂p (t)+

{D(t)+Î α̂a (t)}/r
]{
Ŝα̂(t)+φ̂κ̂V̂ α̂

1 (t)+κ̂V̂ α̂
2 (t)

}
/M in the post-vaccine period (t > T1), for

t= T1 + 1, . . . , T − 2, the infection rate βIp
t can be estimated by kernel regression,

β̂
Ip
t =

∑T−2
i=T1+1X(i)Y (i)B{(t− i)/h}∑T−2

i=T1+1X(i)2B{(t− i)/h}
.(15)

The regression use Y (t) and X(t) until T − 2 since the imputed values Î α̂p (t+1) =∆N(t+

1)/α̂ used in Y (t) can only be obtained for t≤ T − 2. Note that the estimator β̂Ip,α̂
t in (A.8)

for the infection rates in the pre-vaccine period is a special case of (15) with V̂ α̂
1 (t) and

V̂ α̂
2 (t) set to zero for t ∈ {1, . . . , T1}. The estimation procedure of βIp

t in the intervening and
Delta-dominated period is the same except using each period’s φ̂ and κ̂.

4.5. Parametric bootstrap inference. Let η = {α, (φi, κi)
3
i=1, (β

Ip
t , γr,t, γd,t)

T
t=1} be the

epidemiological parameters of our concern in the whole study period, where {(φi, κi)}3i=1
are the vaccine effect parameters for the pre-Delta, intervening and Delta-dominated peri-
ods, respectively. And we denote the generation process by our proposed SEM based on (2)
and (A.3) at the given η as vSVIADR(η). To obtain an uncertainty measure for these epi-
demiological parameters, we consider using the parametric bootstrap procedure under the
vSVIADR(η̂) model with the estimated parameters η̂.

Specifically, let {S∗(t), V ∗
1 (t), V

∗
2 (t), I

∗
a(t), I

∗
p (t),D

∗(t),R∗
a(t),R

∗
r(t),R

∗
d(t)}Tt=1 be a re-

sampled trajectory of the entire state variables from the bootstrap. Given α̂, β̂Ip
t , γ̂r,t, γ̂d,t, and

the observed and imputed initial values {D(1),Rr(1),Rd(1), Î
α̂
a (1), Î

α̂
p (1), R̂

α̂
a (1), Ŝ

α̂
a (1)},

bootstrap resampled trajectories for the first T1 days in the pre-vaccine period were generated
by substituting these estimates into (2) and (A.3) with setting {V ∗

1 (t), V
∗
2 (t),G

∗
1(t),G

∗
2(t)}

T1

t=1
to zero. Then, the bootstrap resampling for the pre-Delta period was conducted via
vSVIADR(η̂) with the initial value {S∗(T1), V ∗

1 (T1), V
∗
2 (T1), I

∗
a(T1), I

∗
p (T1), D

∗(T1),
R∗

a(T1), R
∗
r(T1), R

∗
d(T1)} according to (2) and (A.3). For the resampling in this period,

we did not resample G1(t) and G2(t) but used their original observations since they are
irrelevant to η which can be seen in (2). The following bootstrap resampled data in the inter-
vening and Delta-dominated period can be generated in the same way with the estimates for
the corresponding estimated parameters in η̂.
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The parameter η was re-estimated based on the bootstrap resamples. The resampling was
replicated for a large number (B) of times to obtain B independent bootstrap estimates
{η̂b,∗}Bb=1 for the parameter. The sample standard deviation of the bootstrap estimates can
be used to estimate the standard error of η̂. Let η̂∗i(0.025) and η̂∗i(0.975) be, respectively, the
2.5th and 97.5th percentile of the bootstrap estimates for ηi, the ith element of η. Then, the
95% percentile bootstrap confidence interval of ηi is [η̂∗i(0.025), η̂

∗
i(0.975)]. Furthermore, let the

vaccine effect parameter for full vaccination in country j in period i be κji . Then, we can use
the 95% one-sided bootstrap confidence interval of κji −κ

j′

i to formulate a pairwise bootstrap
test for the difference in the VPRs of the two countries j and j′. Specifically, let q̂j,j

′

i(0.05) and

q̂j,j
′

i(0.95) be the 5th and 95th percentile of the bootstrap distribution for κ̂ji − κ̂j
′

i , respectively,
then the VPR of the full vaccination in period i in country j is significantly lower (higher)
than that in country j′ if q̂j,j

′

i(0.05) > 0 (q̂j,j
′

i(0.95) < 0). Similar tests can be conducted for VPRs
of the partial vaccination.

5. Simulation experiments. To illustrate the performance of the proposed estimation
method and the asymptotic performance of the estimators as the population size M in-
creases, we designed a simulation in which the length of data before and after the start of
vaccination was T1 = 300 and T2 = 50 days, respectively. To mimic the COVID-19 reality,
we set r = 5, α = 0.15, µ1 = 1/60, µ2 = 1/240, θ = 0.8, (φ,κ) ∈ {(2.5,0.1), (1.5,0.4)},
M ∈ {5× 108,1× 109,1.5× 109}, Ia(1)/M = 5× 10−8, Ip(1)/M = 2× 10−7, D(1)/M =
3 × 10−8, Rr(1)/M = 4 × 10−8, Ra(1) = Rd(1) = G1(1) = G2(1) = 0, ϕ1,t = 0.005 ×
1(T1,T2](t) and ϕ2,t = 0.025 × 1(T1,T2](t), where 1A(t) is the indicator function with value
1 if t ∈ A, and 0 otherwise. For the varying coefficient parameters, to make the simu-
lation in line with the data in real-world situations, we mimicked the pattern of the es-
timated infection, recovery and death rates of the US in the pre-vaccine period. Specif-
ically, we set γr,t = {0.1 + 0.0286

14 (1 − t)}1[1,16)(t) + 0.0714 × 1[16,T1+T2](t) for the re-
covery rate, γd,t = {0.01 + 0.0088

129 (1 − t)}1[1,131)(t) + 0.00119 × 1[131,T1+T2](t) for the
death rate which linearly decreases in the first 130 days and then remains constant, and
β

Ip
t = [−0.4 + exp{0.014(1− t)}]1[1,50](t) + {0.1 + 0.078

70 (t− 50)}1(50,120](t) + {0.178−
0.043
80 (t− 120)}1(120,200](t)+ {0.135+ 0.005

20 (t− 200)}1(200,220](t)+ 0.14× 1(220,T1](t) for
the pre-vaccine period t ≤ T1, which consists of segments of exponential decrease, linear
increase, linear decrease and constant functions. See Figure S4 in the SM for the comparison
of the piece-wise curves in our setting with those of the US estimates.

For each combination of the parameter settings, we considered three different settings
of the infection rate after the vaccination: (i) constant trend βIp

t ≡ 0.14; (ii) increasing trend
β

Ip
t = 0.14+8×10−8(t−T1)3; and (iii) decreasing trend βIp

t = 0.14−8×10−8(t−T1)3. For
each parameter setting, the trajectories of all compartments were generated by adding up the
Poisson increments over time according to (2) and (A.3), and this process was independently
repeated 100 times. For each repetition, we use the estimation method described in Section 4
to obtain α̂, φ̂ and κ̂ by (11) and (14), and then the infection rate by (15).

Table 1 reports the estimation results for α and the vaccine effects (1 − φκ,1 − κ) for
the partial and fully vaccinated group, which are equal to (0.75,0.9) and (0.4,0.6) under the
settings of (φ,κ) = (2.5,0.1) and (φ,κ) = (1.5,0.4), respectively. Figures 3 and S5-S9 in the
SM display the estimation results of the time-varying coefficients βIp

t , γd,t, γr,t and Rt, with
the comparison to their true values. These results reveal general satisfactory performance of
the estimation procedure, since all the confidence intervals of the parameters covered the true
values although some were quite narrow due to the large infection size. For each setting of
parameters, the standard errors of the estimates over 100 replications decreased (Table 1)
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TABLE 1
Average estimates (103× the standard errors) of the diagnosis rate α, the vaccine protection rates 1−φκ and

1− κ for the partial and full vaccination, respectively, under different parameter settings based on 100
simulations.

(α,1−φκ,1− κ) β
Ip
t Population size α̂ 1− φ̂κ̂ 1− κ̂

(0.15, 0.75, 0.9)

Constant
5×108 0.153 (2.0) 0.744 (8.2) 0.904 (3.0)
1×109 0.153 (1.7) 0.745 (7.1) 0.900 (2.3)

1.5×109 0.155 (1.7) 0.736 (6.9) 0.897 (1.9)

Increasing
5×108 0.155 (2.0) 0.737 (8.5) 0.903 (3.1)
1×109 0.156 (1.8) 0.729 (7.3) 0.904 (2.2)

1.5×109 0.153 (1.7) 0.740 (7.0) 0.902 (1.9)

Decreasing
5×108 0.154 (2.0) 0.743 (8.2) 0.903 (3.2)
1×109 0.155 (1.7) 0.737 (7.2) 0.893 (2.2)

1.5×109 0.153 (1.7) 0.745 (7.0) 0.896 (2.1)

(0.15, 0.4, 0.6)

Constant
5×108 0.153 (1.9) 0.392 (5.3) 0.617 (3.8)
1×109 0.155 (1.7) 0.389 (4.3) 0.601 (2.5)

1.5×109 0.153 (1.6) 0.395 (4.1) 0.602 (2.4)

Increasing
5×108 0.154 (2.0) 0.386 (5.5) 0.618 (3.9)
1×109 0.155 (1.7) 0.388 (4.6) 0.601 (2.7)

1.5×109 0.153 (1.7) 0.392 (4.4) 0.603 (2.7)

Decreasing
5×108 0.154 (2.0) 0.387 (6.0) 0.624 (3.8)
1×109 0.153 (1.8) 0.392 (4.7) 0.610 (3.5)

1.5×109 0.156 (1.7) 0.388 (4.5) 0.602 (2.8)

and the confidence intervals of the parameters became smaller (by comparison among the
three panels of Figure 3) with the increase of the population size. Generally, the bias of the
estimates also decreased as the population size increased. From Figure 3, the differences
between the estimates γ̂d,t and γ̂r,t and their true values suggest that their variation decreased
with time t due to the increasing number of infected people (sample size). There was no
obvious trend in the variations of β̂Ip

t and R̂t over time since our multi-step decentralized
estimation made the variation of these estimates be also influenced by the variation of the
other parameters, including α̂, γ̂d,t, γ̂r,t, φ̂ and κ̂. We also considered the simulation with
another set of initial values. The results are reported in Table S6 in the SM, which were close
to the estimated VPRs in Table 1.

6. Results on vaccine protection rates. We applied the proposed SEM and the infer-
ence procedures presented in Section 4 to evaluate the real-world VPRs in the ten countries,
which are represented by 1 − φκ and 1 − κ for the partial and full vaccination under our
model, respectively. We estimated the VPRs in the three periods (the pre-Delta, intervening
and Delta-dominated) after vaccination for the ten countries. The results are reported in Table
2. India did not have the pre-Delta period after vaccination as stated in Section 2. It is noted
that the VPR estimated in the Delta period was not against the Delta variant only, but against
all strains that occurred in this period.

Table 2 shows that the overall VPRs of the full vaccination during the pre-Delta period
in the 9 countries without India ranged from 68% to 95% (Average: 81%, SE: 4%) while
those of the partial vaccination ranged from 48% to 64% (Average: 56%, SE: 2%), which
suggested that the full vaccination would bring 12%-40% (Average:24%, SE: 4%) more VPR
than the partial vaccination. Hence, the full vaccination’s VPRs regardless of the brands and
their combinations all passed the 50% threshold for being effective according to the WHO
guideline (WHO, 2021), while the partial vaccination’s VPRs largely passed the threshold
except Turkey whose was at 48%.

The full vaccination’s VPRs of the countries in the intervening period ranged from 49%
to 87% (Average: 69%, SE 3%) and those of the partial vaccination ranged from 23.5% to
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(a) Population size M = 5× 108

(b) Population size M = 1× 109

(c) Population size M = 1.5× 109

Fig 3: Curves of true (black) and estimated (red) βIp
t , γr,t, γd,t and Rt with the colored 2.5%-

97.5% quantile bands for three population sizes. The dashed vertical line marks the start of
vaccination. The true values of infection rates after the start of the vaccination were 0.14, and
α, φ and κ were 0.15, 2.5 and 0.1, respectively.

67.5% (Average: 47%, SE 4%). The paired t-test for the mean VPRs in the nine countries
in the two periods showed that the mean VPRs in the intervening period were significantly
lower than those in the Pre-Delta period for the partial vaccination (p-value 0.016) and the
full vaccination (p-value 0.005). And the full vaccination offered 15%-33% (Average 22%,
SE 2%) more protection than the partial one. When the Delta variant was prevalent, the partial
vaccination showed even lower VPRs ranging from 17.5% to 48% (Average: 35%, SE 3%).
Only the US’s and Peru’s partial VPRs stayed above 40%. Thus, the partial vaccination was
not sufficiently protective against the Delta strain in the ten countries, which was consistent
with the findings in Li et al. (2021) based on a small size retrospective study and Planas et al.
(2021) via investigating the neutralising capacity of sera from vaccine recipients. The VPRs
of the full vaccination during the Delta period ranged from 45% to 74% (Average: 59%, SE:
2%), with the highest being 74% (CI: 69% to 79%) in the US and the lowest 45% (CI: 40%
to 50%) in Turkey. The full vaccination during the Delta period had 19.5%-36% (average
24%, SE 2%) premium beyond the partial vaccination, indicating the boosting effect of the
full vaccination against the Delta variant.

Table 2 indicates waning VPRs as the Delta variant gradually became the dominant strain,
whether for partial or full vaccination. Compared to the pre-Delta period, the VPRs of full
vaccination in the Delta-dominated period for the 9 countries without India decreased by
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TABLE 2
The estimated vaccine protection rates of the partial and full vaccination in the pre-Delta, the intervening and
the Delta-dominated periods for the 10 countries. The standard errors obtained by the bootstrap method are

reported in the parentheses.

(a) Pre-Delta period
Country Time Vaccine Partial Full
Brazil 2021-01-16 ∼ 2021-05-19 AstraZeneca, Sinovac 0.625 (0.07) 0.75 ( 0.03)

Canada 2020-12-13 ∼ 2021-03-14 Moderna, AstraZeneca, Pfizer 0.58 (0.07) 0.86 (0.02)
Germany 2020-12-26 ∼ 2021-02-28 Janssen, Moderna, AstraZeneca, Pfizer 0.56 (0.07) 0.89 (0.02)

Italy 2020-12-26 ∼ 2021-04-01 Janssen, Moderna, AstraZeneca, Pfizer 0.58 (0.07) 0.94 (0.01)
Peru 2021-02-07 ∼ 2021-06-09 AstraZeneca, Pfizer, Sinopharm 0.64 (0.06) 0.76 (0.04)

Portugal 2020-12-26 ∼ 2021-04-04 Moderna, AstraZeneca, Pfizer 0.52 (0.06) 0.68 (0.04)
Turkey 2021-02-11 ∼ 2021-04-27 Sinovac, Pfizer 0.48 (0.05) 0.74 (0.04)

UK 2021-01-09 ∼ 2021-02-21 AstraZeneca, Pfizer 0.52 (0.04) 0.68 (0.03)
US 2020-12-12 ∼ 2021-02-22 Moderna, Pfizer 0.55 (0.07) 0.95 (0.01)

Average (SE) 0.562 (0.017) 0.806 (0.035)

(b) Intervening period
Country Time Vaccine Partial Full
Brazil 2021-05-20 ∼ 2021-08-15 Pfizer, AstraZeneca, Sinovac 0.52 (0.05) 0.68 (0.03)

Canada 2021-03-15 ∼ 2021-07-04 Moderna, AstraZeneca, Pfizer 0.45 (0.05) 0.78 (0.03)
Germany 2021-03-01 ∼ 2021-07-04 Janssen, Moderna, AstraZeneca, Pfizer 0.505 (0.05) 0.67 (0.03)

India 2021-01-15 ∼ 2021-04-11 Covaxin, AstraZeneca 0.46 (0.05) 0.64 (0.04)
Italy 2021-04-02 ∼ 2021-07-04 Janssen, Moderna, AstraZeneca, Pfizer 0.55 (0.05) 0.7 (0.02)
Peru 2021-06-10 ∼ 2021-09-12 AstraZeneca, Pfizer, Sinopharm 0.46 (0.06) 0.73 (0.04)

Portugal 2021-04-05 ∼ 2021-05-23 Janssen, Moderna, AstraZeneca, Pfizer 0.38 (0.06) 0.69 (0.03)
Turkey 2021-04-28 ∼ 2021-06-20 Sinovac, Pfizer 0.235 (0.05) 0.49 (0.03)

UK 2021-02-22 ∼ 2021-05-23 Moderna, AstraZeneca, Pfizer 0.46 (0.06) 0.64 (0.04)
US 2021-02-23 ∼ 2021-06-20 Janssen, Moderna, Pfizer 0.675 (0.05) 0.87 (0.02)

Average (SE) 0.470 (0.036) 0.689 (0.031)

(c) Delta-dominated period
Country Time Vaccine Partial Full
Brazil 2021-08-16 ∼ 2021-11-20 Janssen, Pfizer, AstraZeneca, Sinovac 0.385 (0.05) 0.59 (0.03)

Canada 2021-07-05 ∼ 2021-11-20 Moderna, AstraZeneca, Pfizer 0.28 (0.05) 0.64 (0.03)
Germany 2021-07-05 ∼ 2021-11-20 Janssen, Moderna, AstraZeneca, Pfizer 0.40 (0.04) 0.60 (0.03)

India 2021-04-12 ∼ 2021-11-20 Covaxin, AstraZeneca 0.325 (0.05) 0.55 (0.03)
Italy 2021-07-05 ∼ 2021-11-20 Janssen, Moderna, AstraZeneca, Pfizer 0.355 (0.02) 0.57 (0.01)
Peru 2021-09-13 ∼ 2021-11-20 AstraZeneca, Pfizer, Sinopharm 0.415 (0.04) 0.61 (0.03)

Portugal 2021-05-24 ∼ 2021-11-20 Janssen, Moderna, AstraZeneca, Pfizer 0.37 (0.05) 0.58 (0.03)
Turkey 2021-06-21 ∼ 2021-11-20 Sinovac, Pfizer 0.175 (0.04) 0.45 (0.03)

UK 2021-05-24 ∼ 2021-11-20 Moderna, AstraZeneca, Pfizer 0.34 (0.05) 0.56 (0.03)
US 2021-06-21 ∼ 2021-11-20 Janssen, Moderna, Pfizer 0.48 (0.05) 0.74 (0.03)

Average (SE) 0.353 (0.026) 0.589 (0.023)

10%-37% (average 21%, SE 3%), while those for partial vaccination decreased by 7%-30.5%
(average 21%, SE 2%). Relative to the intervening period, the VPRs of full vaccination in the
Delta-dominated period were reduced by 4%-14% (average 10%, SE 1%), and those of the
partial vaccination by 1%-19.5% (average 12%, 2%). The paired t-test for the mean VPRs
in the ten countries in the two periods showed that the mean VPRs in the Delta-dominated
period were significantly lower than those in the intervening period for the partial vaccination
(p-value 1.2×10−4) and the full vaccination (p-value 1.8×10−6). The average effectiveness
of partial vaccination in the three periods was 23% (SE: 1%) less than that of the full vaccina-
tion, which was consistent with the findings in a test-negative case-control study in England
(Bernal et al., 2021) and also the sera neutralising capacity study in Planas et al. (2021).

The ten countries used a mixed brand of vaccines. Our results suggested that the estimated
VPRs were similar among countries administrated with the same type of vaccines in a period.
For example, the estimated VPRs in Germany and Italy were close over the three periods for
both partial and full vaccination. In addition to vaccine types, the VPRs were also affected by
the distribution strategy of vaccines and the SARS-Cov-2 variants in a country. For the two
European nations Italy and Portugal, the differences of the VPRs in the two countries were
not significant in the intervening and Delta-dominated periods. The larger difference in the
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two countries’ VPRs over the Pre-Delta period might be due to the proportions of different
types of vaccines administrated and the dosing interval between the first and second shots.
Notice that Portugal extended the vaccine dosing interval from 21 to 28 days in February
2021 (Kislaya et al., 2022), and the proportion of mRNA vaccines distributed in Italy was
higher as of July 21, 2022 (Statista, 2021), although we did not have data to compare the
vaccine distribution of the two countries by April 1, 2021. If information on the numbers of
intakes for different vaccine brands were available, we would conduct a regression analysis
on the relationship between the estimated VPRs of each country and the intake proportions
of different vaccine brands in this country. However, this information was not available in
the national level statistics, which prevents us comparing the protection rate across vaccine
brands. Although the VPR of a specific brand can not be directly measured due to the lack
of data, the country-level results can reflect the protection rates of different vaccine brands to
some extent. For instance, results of the US which mainly took Pfizer and Moderna may be
used to show the effect of mRNA vaccines; Canada and the four European countries mainly
used a mixture of non-replicating viral vector vaccines (AstraZeneca) and mRNA vaccines.

To evaluate the vaccine performance in different countries, we can test for the differences
in the VPRs of full dose vaccination among the ten countries over the post-vaccine periods
based on the one-sided pairwise test outlined in Section 4.5 with the results reported in Figure
5 (a) and Figures S10-S11 in the SM. The figures show that over the three periods, the US had
the significantly highest VPRs among the 10 countries, where the two mRNA-based vaccines
Moderna and Pfizer were mainly applied. Turkey where an inactivated vaccine Sinovac was
administrated had the significantly lowest VPRs in the intervening and Delta-dominated pe-
riods. The VPRs of the countries (Brazil, Canada, Germany, Italy, Peru, Portugal, UK) using
AstraZeneca and mRNA vaccines were immediately below the US’s, but higher than those of
India which took Covaxin and AstraZeneca. Our results were highly consistent with the anal-
yses of Cai et al. (2021a,b) on the efficacy of COVID-19 vaccines using the published test-
negative designs and clinical trials, which found RNA-based vaccines’ effectiveness ranked
first, followed by the viral vector vaccines and then the inactivated vaccines.

7. Sensitivity analysis. The estimated VPRs depend on assigning values for two tun-
ing parameters ζ and θ, which took values 5 and 0.8 in our analysis according to external
studies. To gain information on the sensitivity of the VPRs on the two tuning parameters,
we conducted the sensitivity analysis with ζ = 2,10 under θ = 0.8 and θ = 0.6 under ζ = 5.
Estimates for the diagnosis rate and the VPRs in the three post-vaccine periods for all coun-
tries are reported in Table S7 in the SM. By comparing with the results at the chosen ζ as
reported in Tables 2 and S4, the differences between the values of the diagnosis rates and the
VPRs in the main analysis and those in sensitivity analyses were quite small. Specifically, the
maximum differences in the diagnosis rates and the VPRs by altering the values of ζ were
0.03 and 0.085 respectively, and the average absolute differences were 0.013 (SE: 0.002) for
the diagnosis rates and 0.021 (SE: 0.002) for the VPRs. For the sensitivity analysis of θ, the
results in Table S7 show that the differences between the values of the diagnosis rates and
the VPRs with θ being 0.8 as in the main analysis and those with θ being 0.6 were at most
0.025 and 0.095, respectively. And the average absolute differences were 0.014 (SE: 0.002)
for the diagnosis rates and 0.022 (SE: 0.003) for the VPRs. These indicated that the estimated
diagnosis rates and VPRs were robust to different values of θ and ζ .

8. Scenario analysis. To evaluate community transmission of COVID-19 in the ten
countries, we estimate the effective reproduction number Rt via (3) under the vSVIADR
model. The estimated Rt curves are displayed in Figure 4 (a), which shows a strong correla-
tion betweenRt > 1 and the substantial increase of the newly confirmed cases ∆N(t). Figure
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(a) The scaled ∆N(t), ∆Rd(t) and the estimated Rt

(b) The estimated βIp
t , and the empirical and would-be Rt

Fig 4: (a) Estimated Rt (black), and the daily increase of confirmed cases ∆N(t) (red) and
death ∆Rd(t) (green) rescaled to [0,1] by their respective maximums from March 5, 2020 to
November 5, 2021. (b) Estimates of infection rates βIp

t , the empirical (blue) and the would-be
(red) Rt. The yellow, light blue and gray colored areas mark the pre-Delta, intervening and
Delta periods, respectively. The dashed vertical lines indicate the vaccination start dates.

4 (b) shows that the estimatedRt was highly correlated with the estimated infection rates βIp
t ,

with the generally higher infection rates in the Delta-dominated period as compared to the
pre-Delta and intervening periods. For many countries, Rt gradually dropped below 1 after
vaccination in the pre-Delta period, but rose above 1 as the Delta variant became prevalent.

The effective reproduction number without vaccines is
{
(1 − θ)βIa

t /γr,t + θ
(
β

Ip
t /α +

βD
t /γt

)}
{S(t) + V1(t) + V2(t)}/M . Figure 4 (b) shows that the would-be Rt curves were

higher than those of the empirically observed Rt defined in (3) after the start of vaccination,
especially when the Delta variant was dominated. This suggests that vaccines contributed to
reducing the effective reproduction number Rt substantially in the Delta-dominated period.
The average empirically observed Rt in the post-vaccine period for the 10 countries was 20%
less than that of the would-be Rt without vaccination.

Another way to evaluate the vaccine effects is to calculate the would-be confirmed
cases and deaths under no vaccination at all and the partial vaccination only without go-
ing for the full vaccination. For each country, the two scenarios were created by dynam-
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ically generating the nine states from the proposed vSVIADR model under each sce-
nario. Since the vaccine effects are accounted by {(φi, κi)}3i=1, we used the empirically
estimated diagnosis rate α̂, the infection rates β̂Ip

t , the recovery rates γ̂r,t and the death
rates γ̂d,t shown in Tables 2 and S4, and Figures 4 (b) and S12. We set {(φi, κi)}3i=1
and {V1(t), V2(t),G1(t),G2(t)}Tt=T1

to zero for the no-vaccination scenario, used the ob-
served {G1(t)}Tt=T1

and the estimates {(φ̂i, κ̂i)}3i=1 as well as making {V2(t),G2(t)}Tt=T1

to zero for the partial-vaccination scenario. We also designed a first-dose-priority vac-
cination scenario which gave priority to the first dose, and then the second dose if
there were remaining vaccines left for it. This design can be realized by using the esti-
mates {(φ̂i, κ̂i)}3i=1 and changing the vaccination functions {G1(t)}Tt=T1

to {min{G1(t) +

G2(t),M}}Tt=T1
and {G2(t)}Tt=T1

to {max{G1(t)+G2(t)−M,0}}Tt=T1
. The simulated tra-

jectories under the three scenarios were made based on (2) and (A.3) with the initial values
{Ŝα̂(T1), V1(T1), V2(T1), Î

α̂
a (T1), Î

α̂
p (T1), R̂

α̂
a (T1),D(T1),Rr(T1),Rd(T1)}. And the simu-

lations of the three scenarios were repeated 100 times for each country under each scenario.
Table 3 provides the would-be increases in confirmed cases and deaths under the no-

vaccine, partial-vaccine and first-dose-priority scenarios relative to the observed values.
Comparing to the observations up to October 31, 2021, there would be 259 million in-
crease in confirmed cases and 2.6 million increase in deaths for the 10 countries combined
in the absence of vaccination, which would amount to 194% and 102% increase over the
observed confirmed cases and deaths, respectively. Under the partial-vaccination scenario,
there would be 117% and 62% increases in confirmed cases and deaths, respectively. The
first-dose-priority scenario would lead to the respective increases of 49% and 24% in the
total confirmed cases and deaths, indicating it would not be a better strategy than the ex-
isting one used by the countries, although the increases in Brazil, Italy and Peru were not
significant. The details on the number of the would-be increases are reported in Table S8 in
the SM. The increase in the cases and deaths would have been particularly phenomenal for
Canada, Germany and the USA, with 333-769% increases in confirmed cases and 109-376%
increases in deaths under the no-vaccine scenario. In a sharp contrast, the would-be increases
in both the cases and deaths in India and Peru were rather small. These were due to, as shown
in Figure S13, the much lower vaccination rates in Peru (46%) and India (23%), as compared
with the other countries.

The actual and the average would-be confirmed cases and deaths generated under the three
scenarios are displayed in Figure S14 in the SM, which shows that the gaps between the
would-be and the observed grew with respect to time for most countries and scenarios espe-
cially in the Delta-dominated period due to the higher would-be Rt in almost all countries.
These are another reflection on the vaccines’ effect in reducing the epidemics.

9. Extension to booster shot and Omicron period. The vaccination of booster shots
started since June 2021 and the circulation of the Omicron variant began since late November
in 2021. The influence of the booster vaccines on the estimated VPRs and the estimation of
VPRs in the Omicron era are important for investigating the necessity of booster vaccination
for pandemic response. The proposed vSVIADR model can be extended to include an addi-
tional compartment V3(t) for those having received the booster shot and not infected at time
t with an additional vaccine effect parameter to reflect the VPR of the booster vaccination.
A similar estimation approach can be applied for the extended model, in which a trivariate
function with respect to the three vaccine effect parameters (partial, full and booster) similar
to the criterion function (13) is minimized by the simulation-based estimation method. We
extend the analysis to March 15, 2022 to cover the Omicron period. Based on the data quality
of the publicly available epidemiological and vaccination data in the extended period, three
out of the ten countries were not considered in the empirical analysis due to the missing rates
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TABLE 3
The increases (the 95% confidence intervals) and the percentages of increase in the confirmed cases and deaths

on October 31, 2021 for the 10 countries under the no (No), partial (Part) and first-dose-priority (First)
vaccination scenarios.

Country
Confirmed cases (thousand) Death (thousand)

Increase (95% CI) Percentage % Increase (95% CI) Percentage %
No No Part First No No Part First

Brazil 14915.6 (14801.6, 15040.1) 68 13 0 312.4 (308.4, 315.7) 51 9 0
Canada 13265.8 (13141.7, 13422.1) 769 411 77 109.2 (107.7, 110.9) 376 188 34

Germany 21600.6 (21363.6, 21833.3) 465 188 36 104.5 (102.6, 106.1) 109 37 5
India 6184.0 (5829.7, 6534.8) 18 6 4 75.3 (70.2, 79.8) 16 6 3
Italy 10817744 (10683.9, 10954.7) 227 61 7 95.4 (93.7, 97.0) 72 17 0
Peru 276.9 (255.3, 295.6) 13 4 0 10.9 (9.6, 12.2) 5 2 0

Portugal 2654.8 (2599.0, 2713.4) 243 88 51 13.0 (12.6, 13.4) 72 24 11
Turkey 10647.1 (10521.0, 10724.6) 132 74 34 76.1 (75.1, 77.0) 108 57 26

UK 25284.4 (25214.1, 25349.7) 278 214 134 74.7 (74.1, 75.4) 53 44 25
US 153210.8 (153132.6, 153294.3) 333 232 98 1688.6 (1686.1, 1691.8) 226 166 70

Total 258857.7 (257542.3, 260162.9) 194 117 49 2560.1 (2540.1, 2579.3) 102 62 24

TABLE 4
The estimated vaccine protection rates of the partial, full and booster vaccination against COVID-19 infection in

the pre-Omicron (Delta-dominated) period from the start of booster shots till the Omicron variant was first
detected, the intervening period from the first detection of Omicron till Omicron became predominant and the

Omicron-dominated period when the majority of the cases were caused by Omicron for seven countries.

(a) Pre-Omicron (Delta-dominated) period
Country Time Vaccine Partial Full Booster
Brazil 2021-09-19 ∼ 2021-11-28 Janssen, Pfizer, AstraZeneca, Sinovac 0.28 (0.06) 0.55 (0.02) 0.82 (0.05)

Germany 2021-08-29 ∼ 2021-11-25 Janssen, Moderna, AstraZeneca, Pfizer 0.344 (0.07) 0.59 (0.03) 0.795 (0.05)
Italy 2021-09-19 ∼ 2021-11-25 Janssen, Moderna, AstraZeneca, Pfizer 0.325 (0.06) 0.55 (0.03) 0.82 (0.06)
Peru 2021-10-14 ∼ 2021-12-05 AstraZeneca, Pfizer, Sinopharm 0.34 (0.06) 0.56 (0.03) 0.824 (0.06)

Turkey 2021-06-29 ∼ 2021-12-05 Sinovac, Pfizer 0.205 (0.05) 0.47 (0.02) 0.788 (0.6)
UK 2021-09-29 ∼ 2021-11-26 Moderna, AstraZeneca, Pfizer 0.31 (0.06) 0.54 (0.02) 0.816 (0.05)
US 2021-08-12 ∼ 2021-11-30 Janssen, Moderna, Pfizer 0.46 (0.05) 0.70 (0.03) 0.97 (0.03)

Average (SE) 0.323 (0.029) 0.566 (0.026) 0.833 (0.023)

(b) Intervening II period
Country Time Vaccine Partial Full Booster
Brazil 2021-11-29 ∼ 2022-01-02 Janssen, Pfizer, AstraZeneca, Sinovac 0.167 (0.04) 0.51 (0.03) 0.706 (0.07)

Germany 2021-11-26 ∼ 2022-01-02 Janssen, Moderna, AstraZeneca, Pfizer 0.28 (0.06) 0.52 (0.04) 0.712 (0.05)
Italy 2021-11-26 ∼ 2022-01-02 Janssen, Moderna, AstraZeneca, Pfizer 0.295 (0.04) 0.53 (0.03) 0.718 (0.05)
Peru 2021-12-06 ∼ 2022-01-02 AstraZeneca, Pfizer, Sinopharm 0.201 (0.05) 0.53 (0.05) 0.718 (0.06)

Turkey 2021-12-06 ∼ 2022-01-16 Sinovac, Pfizer 0.085 (0.06) 0.39 (0.05) 0.634 (0.06)
UK 2021-11-27 ∼ 2022-12-19 Moderna, AstraZeneca, Pfizer 0.15 (0.05) 0.5 (0.05) 0.7 (0.07)
US 2021-12-01 ∼ 2022-12-19 Janssen, Moderna, Pfizer 0.34 (0.04) 0.56 (0.04) 0.736 (0.04)

Average (SE) 0.217 (0.034) 0.506 (0.021) 0.703 (0.012)

(c) Omicron-dominated period
Country Time Vaccine Partial Full Booster
Brazil 2022-01-03 ∼ 2022-03-15 Janssen, Pfizer, AstraZeneca, Sinovac 0.085 (0.04) 0.39 (0.03) 0.634 (0.06)

Germany 2022-01-03 ∼ 2022-03-15 Janssen, Moderna, AstraZeneca, Pfizer 0.115 (0.04) 0.41 (0.05) 0.646 (0.06)
Italy 2022-01-03 ∼ 2022-03-15 Janssen, Moderna, AstraZeneca, Pfizer, Novavax 0.22 (0.05) 0.40 (0.04) 0.64 (0.07)
Peru 2022-01-03 ∼ 2022-03-15 AstraZeneca, Pfizer, Sinopharm 0.10 (0.04) 0.40 (0.03) 0.64 (0.06)

Turkey 2022-01-17 ∼ 2022-03-15 Sinovac, Pfizer, Turkovac 0.051 (0.07) 0.27 (0.04) 0.562 (0.06)
UK 2021-12-20 ∼ 2022-03-15 Moderna, AstraZeneca, Pfizer 0.07 (0.06) 0.38 (0.02) 0.628 (0.06)
US 2021-12-20 ∼ 2022-03-15 Janssen, Moderna, Pfizer 0.259 (0.06) 0.43 (0.04) 0.658 (0.07)

Average (SE) 0.129 (0.030) 0.383 (0.020) 0.630 (0.012)

in the vaccination data (48% in Portugal) and insufficient number of confirmed cases (less
than 10% of the total population) in India and Canada.

The estimated VPRs with the booster vaccine are provided in Table 4. Compared with
Table 2 (c), Table 4 (a) reports the VPRs with the booster vaccine in the Delta-dominated
period after the start of booster shots. Notice that, relative to the start of the Delta-dominated
period, the booster vaccination started 34 days, 31 days and 8 days later in Brazil, Peru and
Turkey, respectively, and more than 51 days later for the other countries. The differences
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Fig 5: Frequency bar-charts on the pairwise VPR comparison of the country on the horizon-
tal coordinate whose VPR was significantly higher than (red), significantly lower than (blue)
or insignificantly different from (green) the other countries by conducting the pairwise test-
ing on the VPRs via the bootstrap method. Panel (a) for the full vaccination among the ten
countries in the Delta-dominated period, and Panel (b) for the booster vaccination among the
seven countries in the Omicron-dominated period.

between the estimated VPRs of the partial and full vaccination when Delta was dominated
in Tables 2 (c) and 4 (a) were quite small with the average absolute difference in the seven
countries being 0.05 (SE: 0.01) for the VPRs of the partial vaccination and 0.03 (SE: 0.006)
for the full vaccination. Therefore, the influence of the booster vaccines on the estimated
VPRs of full and partial vaccination in Table 2 was very small for the Delta-dominated period.

From Table 4 (b) and (c), the Omicron variant reduced the average VPR of the full vac-
cination in the seven countries to 38% (SE: 2%). The pattern of relative VPRs of full vacci-
nation of those countries in the Omicron-dominated period was similar to that in the Delta-
dominated period. Turkey still had the lowest rate at 27%, and the US achieved the the highest
rate at 43%. The booster dose restored the VPR to 63% (SE: 1.2%) in the Omicron-dominated
period, averaged over the seven countries. The VPR of Turkey was much improved by the
booster shots, from 27% to 56.2%. These suggested the necessity of receiving booster doses
to acquire additional immunity. Testing results for the differences in the VPRs among the
seven countries in the same post-vaccine period were shown in Figure 5 (b) and Figures
S15-S17 in the SM, which show that the booster VPRs of the US and Italy in the Omicron-
dominated period were significantly higher than those of most of the other countries.

10. Discussion. This paper proposes a stochastic epidemiological model and an esti-
mation procedure to evaluate vaccine protection rates against COVID-19 infection based on
publicly available data. The real-world evaluation of vaccine protection is operated under
stochasticity, non-permanent immunity and breakthrough infections which were not consid-
ered in Dashtbali and Mirzaie (2021) and Giordano et al. (2021). The proposed model and
estimation procedure can be applied to study the spread of other infectious diseases.
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Our analyses on the 10 countries’ data show significant real-world vaccine benefits in
slowing down the COVID-19 infection, largely meeting the WHO standard for 50% VPRs
even in the Delta-dominated periods, despite the VPRs waning over time as the Delta variant
dominated. Our results on real-world VPR were largely agreeable to those of the published
studies via clinical trials and retrospective studies with smaller sample size and higher costs.
As demonstrated in the scenario analysis in Section 8, the proposed estimation approach can
be used to simulate outcomes under various vaccination strategies, for instance doubling the
vaccination rates of the first dose for a more intensive version of the first-dose-priority, in
an effort to find better strategies than the one having been carried out by the countries. Our
finding of higher effectiveness of the booster vaccination would support efforts for the boost
vaccine uptake in the population in the Omicron era.

It is also noted that the imputation of various compartments is only based on the mean
specification of Model (2). The Poisson regression in (2) implicitly assumes the means of
the daily increments are equal to their variances. If overdispersion exists in the observed
data, negative binomial regression with the same mean specification can be used to replace
the Poisson assumption in (2). Given the mean µt, the variance of the negative binomial
distribution is equal to µt + µ2t /ϖ for an overdispersion parameter ϖ. A similar estimation
procedure can be carried out to estimate the model parameters by including the additional
parameter ϖ in the objective functions (5) and (12), and simulating the trajectories of the
proposed model under the negative binomial distribution.

Furthermore, studying the age and racial effects on the VPRs is an important issue. The
proposed model (2) can be extended to include covariates by building parametric regression
models on the infection rates and VPRs for countries or states. Specifically, after obtaining the
estimated infection rates and VPRs by fitting the epidemiological and vaccination data using
the proposed method for each country or state, we estimate the covariate effects by fitting
regressions of the estimated infection rates and VPRs on the covariates. Another approach
is via constructing a multi-cluster vSVIADR model, where the total population is divided
to estimate VPRs for each sub-population, if the daily data on vaccinations and confirmed
cases of each sub-population are available. The detailed formulations of the two approaches
to studying covariate effects are provided in Section S8 of the SM.

Our study shows the effectiveness of vaccines in reducing the sizes of infection and death.
As we do not have access to the data of seriously ill patients, the vaccine impacts on COVID-
19 to prevent incidence of serious illness could not be investigated. However, upon having
access to these data, the model and analysis can be extended to evaluate such effects.
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The supplementary material provides additional details, tables and figures.
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